-
ejemploaudio
how to use .wav in matlab?
- 2009-03-24 23:38:29下载
- 积分:1
-
OCR
Optical REconnaissance of carcateres using matlab
- 2010-05-26 22:54:38下载
- 积分:1
-
HHT
目前,互联网上HHT信号处理技术有
三种实现方式,采用MATLAB编程语言,一种是法国研究者设计的G Rilling 2007
另一种是MATLAB文件交换中心由Alan Tan开发的plot_hht程序包,第三种是台湾中央大学数据研究中心提供的EEMD包。
其中,我使用了plot_hht程序包,其使用了三个终止条件,驻留分量的单调性,极值点与零点的个数相差不超过1,还有黄锷1998经典文献提出的
SD>0.1,单调性的判断,并不是去判定驻留分量是否是单调函数,而是当曲线是双曲线时,循环结束,由于没有考虑端点效应,程序比较简洁,好读懂,大家
学习HHT可以从这个程序包入手,在此抛砖引玉,希冀有人能比较这三种不同的算法的性能和时间复杂度,以及对各种信号的适应性。
(There provides three types of HTT program packages: one developed by France researcher G. Rilling 2007, the other provided by by Alan Tan from Matlab file exchange center and the third one by Taiwan Central University Data Research Center. Please start from the simple one by Tan to learn more.)
- 2009-04-29 22:43:48下载
- 积分:1
-
BDDocDownloaderv20100620_20100919
智能天线示例代码,请一定要上载质量高而且本站没有的源码。请一定要上载质量高而且本站没有的源码。(Smart antenna sample code, be sure to upload high quality and this site does not source. Be sure you want to upload high quality and this site does not source code.)
- 2012-05-27 22:14:41下载
- 积分:1
-
Kalman
MATLAB实现Kalman滤波,注释详细,对Kalman滤波过程有详尽的解释,是初学者入门进阶的好程序(MATLAB implementation Kalman filtering, detailed notes on the Kalman filtering process has a detailed explanation on entry Advanced beginners are good procedures)
- 2009-03-04 08:53:25下载
- 积分:1
-
image
说明: 利用图像处理工具箱实现均方误差(MSE)、峰值信噪比(PSNR)和熵的源代码(By image processing toolbox to achieve the mean square error (MSE), peak signal to noise ratio (PSNR) and the entropy of the source code)
- 2021-01-07 21:18:52下载
- 积分:1
-
Space-Time-Adaptive-Processing
王永良等编著的《空时自适应信号处理》是对雷达信号进行空时二维处理的经典教材,值得参考(Wang Yongliang ed space-time adaptive signal processing " is a classic textbook, it is worth the two-dimensional space-time radar signal processing reference)
- 2012-09-04 21:46:06下载
- 积分:1
-
OFDM-receiver-part
matlab code for OFDM receiver
- 2015-02-05 17:14:00下载
- 积分:1
-
attachments-(1)---Copy
matlab simulation program for ASK
- 2014-01-06 16:25:02下载
- 积分:1
-
ZCR
autocov computes the autocovariance between two column vectors X and Y with same length N using the Fast Fourier Transform algorithm from 0 to N-2.
The resulting autocovariance column vector acv is given by the formula:
acv(p,1) = 1/(N-p) * sum_{i=1}^{N}(X_{i} - X_bar) * (Y_{i+p} - Y_bar)
where X_bar and Y_bar are the mean estimates:
X_bar = 1/N * sum_{i=1}^{N} X_{i} Y_bar = 1/N * sum_{i=1}^{N} Y_{i}
It satisfies the following identities:
1. variance consistency: if acv = autocov(X,X), then acv(1,1) = var(X)
2. covariance consistence: if acv = autocov(X,Y), then acv(1,1) = cov(X,Y)
- 2013-05-26 22:12:50下载
- 积分:1