登录
首页 » matlab » cvx

cvx

于 2015-09-20 发布 文件大小:15325KB
0 140
下载积分: 1 下载次数: 10

代码说明:

  解决凸优化方面的醉经典工具箱,相信大家都非常熟知这个工具箱,非常棒的工作工具,希望大家下载好好学习!(To solve the problems of convex optimization of the classic drunk toolbox, I believe we are very familiar with this toolbox, very good working tools, I hope you download a good learning!)

文件列表:

cvx
...\builtins
...\........\@cvx
...\........\....\abs.m,2365,2015-06-10
...\........\....\blkdiag.m,1096,2015-06-10
...\........\....\builtins.m,1551,2015-06-10
...\........\....\cat.m,2240,2015-06-10
...\........\....\conj.m,455,2015-06-10
...\........\....\conv.m,2140,2015-06-10
...\........\....\ctranspose.m,803,2015-06-10
...\........\....\cumprod.m,2816,2015-06-10
...\........\....\cumsum.m,1844,2015-06-10
...\........\....\diag.m,1112,2015-06-10
...\........\....\disp.m,438,2015-06-10
...\........\....\end.m,532,2015-06-10
...\........\....\eq.m,754,2015-06-10
...\........\....\exp.m,3398,2015-06-10
...\........\....\find.m,1484,2015-06-10
...\........\....\full.m,368,2015-06-10
...\........\....\ge.m,1224,2015-06-10
...\........\....\gt.m,1448,2015-06-10
...\........\....\hankel.m,1289,2015-06-10
...\........\....\horzcat.m,225,2015-06-10
...\........\....\imag.m,519,2015-06-10
...\........\....\ipermute.m,725,2015-06-10
...\........\....\isreal.m,607,2015-06-10
...\........\....\kron.m,1398,2015-06-10
...\........\....\ldivide.m,932,2015-06-10
...\........\....\le.m,1269,2015-06-10
...\........\....\log.m,4070,2015-06-10
...\........\....\lt.m,1493,2015-06-10
...\........\....\max.m,5925,2015-06-10
...\........\....\min.m,5941,2015-06-10
...\........\....\minus.m,1205,2015-06-10
...\........\....\mldivide.m,874,2015-06-10
...\........\....\mpower.m,648,2015-06-10
...\........\....\mrdivide.m,890,2015-06-10
...\........\....\mtimes.m,10470,2015-06-10
...\........\....\ne.m,523,2015-06-10
...\........\....\nnz.m,987,2015-06-10
...\........\....\norm.m,3399,2015-06-10
...\........\....\permute.m,733,2015-06-10
...\........\....\plus.m,3517,2015-06-10
...\........\....\polyval.m,4452,2015-06-10
...\........\....\power.m,4473,2015-06-10
...\........\....\prod.m,2883,2015-06-10
...\........\....\rdivide.m,978,2015-06-10
...\........\....\real.m,530,2015-06-10
...\........\....\reshape.m,1475,2015-06-10
...\........\....\size.m,1035,2015-06-10
...\........\....\sparse.m,2008,2015-06-10
...\........\....\spy.m,888,2015-06-10
...\........\....\sqrt.m,2307,2015-06-10
...\........\....\std.m,1863,2015-06-10
...\........\....\subsasgn.m,2514,2015-06-10
...\........\....\subsref.m,708,2015-06-10
...\........\....\sum.m,1911,2015-06-10
...\........\....\times.m,8709,2015-06-10
...\........\....\toeplitz.m,1371,2015-06-10
...\........\....\transpose.m,780,2015-06-10
...\........\....\tril.m,686,2015-06-10
...\........\....\triu.m,686,2015-06-10
...\........\....\uminus.m,1016,2015-06-10
...\........\....\uplus.m,339,2015-06-10
...\........\....\var.m,265,2015-06-10
...\........\....\vertcat.m,364,2015-06-10
...\........\@cvxcnst
...\........\........\eq.m,754,2015-06-10
...\........\........\ge.m,1224,2015-06-10
...\........\........\gt.m,1221,2015-06-10
...\........\........\le.m,1269,2015-06-10
...\........\........\lt.m,1266,2015-06-10
...\........\........\ne.m,523,2015-06-10
...\........\Contents.m,1980,2015-06-10
...\commands
...\........\@cvx
...\........\....\commands.m,1047,2015-06-10
...\........\Contents.m,979,2015-06-10
...\........\cvx_begin.m,2415,2015-06-10
...\........\cvx_clear.m,670,2015-06-10
...\........\cvx_end.m,7712,2015-06-10
...\........\cvx_expert.m,1390,2015-06-10
...\........\cvx_pause.m,1102,2015-06-10
...\........\cvx_power_warning.m,1697,2015-06-10
...\........\cvx_precision.m,6433,2015-06-10
...\........\cvx_profile.m,1427,2015-06-10
...\........\cvx_quiet.m,2364,2015-06-10
...\........\cvx_save_prefs.m,1194,2015-06-10
...\........\cvx_solver.m,4365,2015-06-10
...\........\cvx_solver_settings.m,8654,2015-06-10
...\........\cvx_tic.m,997,2015-06-10
...\........\cvx_toc.m,2003,2015-06-10
...\........\cvx_where.m,914,2015-06-10
...\Contents.m,1340,2015-06-10
...\cvx_error.m,2518,2015-06-10
...\cvx_grbgetkey.m,19096,2015-06-10
...\cvx_license.p,6529,2015-06-10
...\cvx_setup.m,14856,2015-06-10
...\cvx_startup.m,4038,2015-06-10
...\cvx_version.m,14459,2015-06-10

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • sdes-report
    sdes based encryption.it is a simplified version of des algorithm
    2014-12-10 11:08:01下载
    积分:1
  • Gau_jor
    求线性方程组的列主元Gauss-jordan消元法(Linear Equations of the column main element Gauss-jordan elimination method)
    2010-12-13 17:23:30下载
    积分:1
  • kalmanfitertest
    教你如何仿真标准卡尔曼滤波算法,一个简单易懂的例子(teach you how to test Kalmanfiler agrethem)
    2013-03-24 15:01:53下载
    积分:1
  • getTableFromWeb_mod
    Read table from HTML file (url) to Matlab cell array.
    2014-02-01 20:56:54下载
    积分:1
  • fastKICA
    说明:  盲源分离FastICA、matalab程序,(FAST KERNEL ICA | |--------------------| Version 1.0- February 2007 Copyright 2007 Stefanie Jegelka, Hao Shen, Arthur Gretton This package contains a Matlab implementation of the Fast Kernel ICA algorithm as described in [1]. Kernel ICA is based on minimizing a kernel measure of statistical independence, namely the Hilbert-Schmidt norm of the covariance operator in feature space (see [3]: this is called HSIC). Given an (n x m) matrix W of n samples from m mixed sources, the goal is to find a demixing matrix X such that the dependence between the estimated unmixed sources X *W is minimal. FastKICA uses an approximate Newton method to perfom this optimization. For more information on the algorithm, read [1], and for more information on HSIC, refer to [3]. The functions chol_gauss and amariD are taken from and based on, respectively, code from Francis Bach (available at http://cmm.ensmp.fr/~bach/kernel-ica/index.htm). The derivative is com)
    2010-04-02 17:49:18下载
    积分:1
  • sensorlessmras
    This is the file for sensorless model referance adaptive system.
    2013-02-23 20:22:44下载
    积分:1
  • HistMapping
    This function used for mapping gray data after equalization with many method into image.
    2013-11-04 17:48:23下载
    积分:1
  • 小波去噪
    说明:  光谱数据预处理之小波去噪,包含两个数据文件(Wavelet denoising for spectral data preprocessing)
    2020-10-19 15:11:57下载
    积分:1
  • irbleigs
    IRBLEIGS: Finds a few eigenvalues and eigenvectors of a Hermitian matrix. IRBLEIGS will find a few eigenvalues and eigenvectors for either the standard eigenvalue problem A*x = lambda*x or the generalized eigenvalue problem A*x = lambda*M*x, where A is a sparse Hermitian matrix and the matrix M is positive definite.
    2010-03-03 14:55:51下载
    积分:1
  • MyULACohSig
    说明:  此程序为均匀线阵情况下的相干信号入射后,阵列所采集的数据,各种参数说明见文件内部(This procedure for uniform linear array of coherent signals incident cases, the array of data collected, within the parameters described in the file)
    2011-04-12 17:02:09下载
    积分:1
  • 696518资源总数
  • 104607会员总数
  • 44今日下载