登录
首页 » Java » mulan

mulan

于 2020-12-17 发布 文件大小:976KB
0 239
下载积分: 1 下载次数: 7

代码说明:

  mulan实现多标签分类,内含多个重要的分类器,乃是分类中的精华(Mulan implementation of multi label classification, containing multiple important classifier, is the essence of the classification)

文件列表:

mulan
.....\.classpath,592,2015-08-04
.....\.project,381,2015-07-17
.....\bin
.....\...\emotions.arff,380476,2012-07-26
.....\...\emotions.xml,332,2012-07-26
.....\...\mlknn
.....\...\.....\Main.class,2023,2015-08-07
.....\...\.....\NewMlknn.class,8959,2015-08-10
.....\...\mulan
.....\...\.....\classifier
.....\...\.....\..........\InvalidDataException.class,638,2015-08-04
.....\...\.....\..........\lazy
.....\...\.....\..........\....\BRkNN$ExtensionType.class,1228,2015-08-04
.....\...\.....\..........\....\BRkNN.class,9309,2015-08-04
.....\...\.....\..........\....\IBLR_ML.class,6982,2015-08-04
.....\...\.....\..........\....\MLkNN.class,6547,2015-08-04
.....\...\.....\..........\....\MultiLabelKNN.class,2697,2015-08-11
.....\...\.....\..........\LearnerException.class,625,2015-08-04
.....\...\.....\..........\meta
.....\...\.....\..........\....\ClusteringBased.class,5471,2015-08-04
.....\...\.....\..........\....\ConstrainedKMeans$bucketInstance.class,1246,2015-08-04
.....\...\.....\..........\....\ConstrainedKMeans.class,12102,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners$IdComparator.class,1425,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners$LabelSubsetsWeight.class,2024,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners$SubsetsDistance.class,1956,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners.class,19559,2015-08-04
.....\...\.....\..........\....\HierarchyBuilder$Method.class,1289,2015-08-04
.....\...\.....\..........\....\HierarchyBuilder.class,14388,2015-08-04
.....\...\.....\..........\....\HMC.class,12965,2015-08-04
.....\...\.....\..........\....\HMCNode.class,3905,2015-08-04
.....\...\.....\..........\....\HOMER.class,6047,2015-08-04
.....\...\.....\..........\....\MultiLabelMetaLearner.class,783,2015-08-04
.....\...\.....\..........\....\RAkEL.class,7688,2015-08-04
.....\...\.....\..........\....\RAkELd.class,7078,2015-08-04
.....\...\.....\..........\....\SubsetLearner.class,14140,2015-08-04
.....\...\.....\..........\....\thresholding
.....\...\.....\..........\....\............\ExampleBasedFMeasureOptimizer.class,4345,2015-08-04
.....\...\.....\..........\....\............\Meta.class,6343,2015-08-04
.....\...\.....\..........\....\............\MetaLabeler.class,8911,2015-08-04
.....\...\.....\..........\....\............\MLPTO.class,7206,2015-08-04
.....\...\.....\..........\....\............\OneThreshold.class,8163,2015-08-04
.....\...\.....\..........\....\............\RCut.class,7500,2015-08-04
.....\...\.....\..........\....\............\SCut.class,8253,2015-08-04
.....\...\.....\..........\....\............\ThresholdPrediction.class,7430,2015-08-04
.....\...\.....\..........\ModelInitializationException.class,662,2015-08-04
.....\...\.....\..........\MultiLabelLearner.class,553,2015-08-04
.....\...\.....\..........\MultiLabelLearnerBase.class,2826,2015-08-04
.....\...\.....\..........\MultiLabelOutput.class,3841,2015-08-04
.....\...\.....\..........\neural
.....\...\.....\..........\......\BPMLL.class,13580,2015-08-04
.....\...\.....\..........\......\BPMLLAlgorithm.class,7512,2015-08-04
.....\...\.....\..........\......\DataPair.class,3092,2015-08-04
.....\...\.....\..........\......\MMPLearner.class,11988,2015-08-04
.....\...\.....\..........\......\MMPMaxUpdateRule.class,1471,2015-08-04
.....\...\.....\..........\......\MMPRandomizedUpdateRule.class,2979,2015-08-04
.....\...\.....\..........\......\MMPUniformUpdateRule.class,2257,2015-08-04
.....\...\.....\..........\......\MMPUpdateRuleBase.class,2674,2015-08-04
.....\...\.....\..........\......\MMPUpdateRuleType.class,1186,2015-08-04
.....\...\.....\..........\......\model
.....\...\.....\..........\......\.....\ActivationFunction.class,454,2015-08-04
.....\...\.....\..........\......\.....\ActivationLinear.class,924,2015-08-04
.....\...\.....\..........\......\.....\ActivationTANH.class,921,2015-08-04
.....\...\.....\..........\......\.....\BasicNeuralNet.class,4840,2015-08-04
.....\...\.....\..........\......\.....\NeuralNet.class,421,2015-08-04
.....\...\.....\..........\......\.....\Neuron.class,5100,2015-08-04
.....\...\.....\..........\......\ModelUpdateRule.class,321,2015-08-04
.....\...\.....\..........\......\NormalizationFilter.class,3682,2015-08-04
.....\...\.....\..........\......\ThresholdFunction.class,2833,2015-08-04
.....\...\.....\..........\transformation
.....\...\.....\..........\..............\AdaBoostMH.class,1851,2015-08-04
.....\...\.....\..........\..............\BinaryRelevance.class,3519,2015-08-04
.....\...\.....\..........\..............\CalibratedLabelRanking.class,10108,2015-08-04
.....\...\.....\..........\..............\ClassifierChain.class,5590,2015-08-04
.....\...\.....\..........\..............\EnsembleOfClassifierChains.class,6300,2015-08-04
.....\...\.....\..........\..............\EnsembleOfPrunedSets.class,5592,2015-08-04
.....\...\.....\..........\..............\IncludeLabelsClassifier.class,2715,2015-08-04
.....\...\.....\..........\..............\LabelPowerset.class,5025,2015-08-04
.....\...\.....\..........\..............\LabelsetPruning.class,3834,2015-08-04
.....\...\.....\..........\..............\MultiClassLearner.class,2215,2015-08-04
.....\...\.....\..........\..............\MultiLabelStacking.class,16409,2015-08-04
.....\...\.....\..........\..............\PPT$Strategy.class,1219,2015-08-04
.....\...\.....\..........\..............\PPT.class,5943,2015-08-04
.....\...\.....\..........\..............\PrunedSets$Strategy.class,1242,2015-08-04
.....\...\.....\..........\..............\PrunedSets.class,6820,2015-08-04
.....\...\.....\..........\..............\TransformationBasedMultiLabelLearner.class,2291,2015-08-04
.....\...\.....\core
.....\...\.....\....\ArgumentNullException.class,1216,2015-08-04
.....\...\.....\....\MulanException.class,594,2015-08-04
.....\...\.....\....\MulanJavadoc.class,3615,2015-08-04
.....\...\.....\....\MulanRuntimeException.class,622,2015-08-04
.....\...\.....\....\Util.class,1104,2015-08-04
.....\...\.....\....\WekaException.class,604,2015-08-04
.....\...\.....\data
.....\...\.....\....\ConditionalDependenceIdentifier.class,8602,2015-08-04
.....\...\.....\....\ConverterCLUS.class,5825,2015-08-04
.....\...\.....\....\ConverterLibSVM.class,6687,2015-08-04
.....\...\.....\....\DataLoadException.class,616,2015-08-04
.....\...\.....\....\DataUtils.class,1281,2015-08-04
.....\...\.....\....\GreedyLabelClustering.class,8137,2015-08-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • InFile
    声场计算模型for3d的in文件写入,仅供参考(to write the in-file that the for3d programme need.)
    2020-10-23 17:57:23下载
    积分:1
  • zsorceactoac
    simulink model of an impedance source inverter. try to verify the performance. it is for study purpose..
    2011-09-22 23:26:13下载
    积分:1
  • gatbs-toolbox-and-examples
    BSheffield大学gatbs工具箱所有算例下载及调试说明,可直接下载到matlab文件夹下调用(BSheffield University gatbs Toolbox Download all examples and debug instructions can be downloaded directly to a folder called matlab)
    2011-11-08 10:53:29下载
    积分:1
  • fuzzy-control
    本代码实现了通过模糊控制进行倒车的例子,可以完美运行,是智能控制方面学习的好资料。(The code examples performed by reversing the fuzzy control, can perfectly run, is good information intelligent control aspects of learning.)
    2021-03-25 13:59:13下载
    积分:1
  • EEMD
    eemd,改进的emd程序,保证可用,识别频率阻尼比和模态(eemd, improved emd procedures to ensure that available to identify the frequency and modal damping ratio)
    2021-03-25 15:39:14下载
    积分:1
  • 蚁群ACO-PSO
    说明:  蚁群算法混合粒子群算法的matlab程序(Matlab Program of Ant Colony Algorithm Mixed Particle Colony Algorithm)
    2019-06-09 22:55:27下载
    积分:1
  • LMSsin
    原始信号、噪音均为正弦信号的LMS噪音抵消系统实现(The original signal and noise are sinusoidal signals in noise canceling system to achieve LMS)
    2009-12-05 15:30:25下载
    积分:1
  • superresolution_v_2[1].0
    说明:  代码主要实现超分辨率图像恢复,采用图形界面,可自主选择要处理的图像(Code key to achieve super-resolution image restoration, using a graphical interface, could choose to deal with image)
    2010-04-11 10:55:43下载
    积分:1
  • icaam
    icaam, G. Papandreou and P. Maragos, Adaptive and Constrained Algorithms for Inverse Compositional Active Appearance Model Fitting, Proc. IEEE Int l Conf. on Computer Vision and Pattern Recognition (CVPR-2008), Anchorage, AL, June 2008.
    2014-12-04 15:30:45下载
    积分:1
  • BFSK_rayleigh
    This file describ the BFSK_rayleigh.
    2012-06-30 02:27:20下载
    积分:1
  • 696518资源总数
  • 106222会员总数
  • 14今日下载