登录
首页 » Java » mulan

mulan

于 2020-12-17 发布 文件大小:976KB
0 164
下载积分: 1 下载次数: 7

代码说明:

  mulan实现多标签分类,内含多个重要的分类器,乃是分类中的精华(Mulan implementation of multi label classification, containing multiple important classifier, is the essence of the classification)

文件列表:

mulan
.....\.classpath,592,2015-08-04
.....\.project,381,2015-07-17
.....\bin
.....\...\emotions.arff,380476,2012-07-26
.....\...\emotions.xml,332,2012-07-26
.....\...\mlknn
.....\...\.....\Main.class,2023,2015-08-07
.....\...\.....\NewMlknn.class,8959,2015-08-10
.....\...\mulan
.....\...\.....\classifier
.....\...\.....\..........\InvalidDataException.class,638,2015-08-04
.....\...\.....\..........\lazy
.....\...\.....\..........\....\BRkNN$ExtensionType.class,1228,2015-08-04
.....\...\.....\..........\....\BRkNN.class,9309,2015-08-04
.....\...\.....\..........\....\IBLR_ML.class,6982,2015-08-04
.....\...\.....\..........\....\MLkNN.class,6547,2015-08-04
.....\...\.....\..........\....\MultiLabelKNN.class,2697,2015-08-11
.....\...\.....\..........\LearnerException.class,625,2015-08-04
.....\...\.....\..........\meta
.....\...\.....\..........\....\ClusteringBased.class,5471,2015-08-04
.....\...\.....\..........\....\ConstrainedKMeans$bucketInstance.class,1246,2015-08-04
.....\...\.....\..........\....\ConstrainedKMeans.class,12102,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners$IdComparator.class,1425,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners$LabelSubsetsWeight.class,2024,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners$SubsetsDistance.class,1956,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners.class,19559,2015-08-04
.....\...\.....\..........\....\HierarchyBuilder$Method.class,1289,2015-08-04
.....\...\.....\..........\....\HierarchyBuilder.class,14388,2015-08-04
.....\...\.....\..........\....\HMC.class,12965,2015-08-04
.....\...\.....\..........\....\HMCNode.class,3905,2015-08-04
.....\...\.....\..........\....\HOMER.class,6047,2015-08-04
.....\...\.....\..........\....\MultiLabelMetaLearner.class,783,2015-08-04
.....\...\.....\..........\....\RAkEL.class,7688,2015-08-04
.....\...\.....\..........\....\RAkELd.class,7078,2015-08-04
.....\...\.....\..........\....\SubsetLearner.class,14140,2015-08-04
.....\...\.....\..........\....\thresholding
.....\...\.....\..........\....\............\ExampleBasedFMeasureOptimizer.class,4345,2015-08-04
.....\...\.....\..........\....\............\Meta.class,6343,2015-08-04
.....\...\.....\..........\....\............\MetaLabeler.class,8911,2015-08-04
.....\...\.....\..........\....\............\MLPTO.class,7206,2015-08-04
.....\...\.....\..........\....\............\OneThreshold.class,8163,2015-08-04
.....\...\.....\..........\....\............\RCut.class,7500,2015-08-04
.....\...\.....\..........\....\............\SCut.class,8253,2015-08-04
.....\...\.....\..........\....\............\ThresholdPrediction.class,7430,2015-08-04
.....\...\.....\..........\ModelInitializationException.class,662,2015-08-04
.....\...\.....\..........\MultiLabelLearner.class,553,2015-08-04
.....\...\.....\..........\MultiLabelLearnerBase.class,2826,2015-08-04
.....\...\.....\..........\MultiLabelOutput.class,3841,2015-08-04
.....\...\.....\..........\neural
.....\...\.....\..........\......\BPMLL.class,13580,2015-08-04
.....\...\.....\..........\......\BPMLLAlgorithm.class,7512,2015-08-04
.....\...\.....\..........\......\DataPair.class,3092,2015-08-04
.....\...\.....\..........\......\MMPLearner.class,11988,2015-08-04
.....\...\.....\..........\......\MMPMaxUpdateRule.class,1471,2015-08-04
.....\...\.....\..........\......\MMPRandomizedUpdateRule.class,2979,2015-08-04
.....\...\.....\..........\......\MMPUniformUpdateRule.class,2257,2015-08-04
.....\...\.....\..........\......\MMPUpdateRuleBase.class,2674,2015-08-04
.....\...\.....\..........\......\MMPUpdateRuleType.class,1186,2015-08-04
.....\...\.....\..........\......\model
.....\...\.....\..........\......\.....\ActivationFunction.class,454,2015-08-04
.....\...\.....\..........\......\.....\ActivationLinear.class,924,2015-08-04
.....\...\.....\..........\......\.....\ActivationTANH.class,921,2015-08-04
.....\...\.....\..........\......\.....\BasicNeuralNet.class,4840,2015-08-04
.....\...\.....\..........\......\.....\NeuralNet.class,421,2015-08-04
.....\...\.....\..........\......\.....\Neuron.class,5100,2015-08-04
.....\...\.....\..........\......\ModelUpdateRule.class,321,2015-08-04
.....\...\.....\..........\......\NormalizationFilter.class,3682,2015-08-04
.....\...\.....\..........\......\ThresholdFunction.class,2833,2015-08-04
.....\...\.....\..........\transformation
.....\...\.....\..........\..............\AdaBoostMH.class,1851,2015-08-04
.....\...\.....\..........\..............\BinaryRelevance.class,3519,2015-08-04
.....\...\.....\..........\..............\CalibratedLabelRanking.class,10108,2015-08-04
.....\...\.....\..........\..............\ClassifierChain.class,5590,2015-08-04
.....\...\.....\..........\..............\EnsembleOfClassifierChains.class,6300,2015-08-04
.....\...\.....\..........\..............\EnsembleOfPrunedSets.class,5592,2015-08-04
.....\...\.....\..........\..............\IncludeLabelsClassifier.class,2715,2015-08-04
.....\...\.....\..........\..............\LabelPowerset.class,5025,2015-08-04
.....\...\.....\..........\..............\LabelsetPruning.class,3834,2015-08-04
.....\...\.....\..........\..............\MultiClassLearner.class,2215,2015-08-04
.....\...\.....\..........\..............\MultiLabelStacking.class,16409,2015-08-04
.....\...\.....\..........\..............\PPT$Strategy.class,1219,2015-08-04
.....\...\.....\..........\..............\PPT.class,5943,2015-08-04
.....\...\.....\..........\..............\PrunedSets$Strategy.class,1242,2015-08-04
.....\...\.....\..........\..............\PrunedSets.class,6820,2015-08-04
.....\...\.....\..........\..............\TransformationBasedMultiLabelLearner.class,2291,2015-08-04
.....\...\.....\core
.....\...\.....\....\ArgumentNullException.class,1216,2015-08-04
.....\...\.....\....\MulanException.class,594,2015-08-04
.....\...\.....\....\MulanJavadoc.class,3615,2015-08-04
.....\...\.....\....\MulanRuntimeException.class,622,2015-08-04
.....\...\.....\....\Util.class,1104,2015-08-04
.....\...\.....\....\WekaException.class,604,2015-08-04
.....\...\.....\data
.....\...\.....\....\ConditionalDependenceIdentifier.class,8602,2015-08-04
.....\...\.....\....\ConverterCLUS.class,5825,2015-08-04
.....\...\.....\....\ConverterLibSVM.class,6687,2015-08-04
.....\...\.....\....\DataLoadException.class,616,2015-08-04
.....\...\.....\....\DataUtils.class,1281,2015-08-04
.....\...\.....\....\GreedyLabelClustering.class,8137,2015-08-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • shariq-lab5
    WILL HELP IN LAB OF WMCC SUBJECT
    2012-05-26 00:17:14下载
    积分:1
  • daitonglvbo
    带通滤波,matlab调用函数,同时输出频率域与时间域响应(Bandpass filtering, matlab function is called, the output frequency domain and time domain response)
    2012-08-12 16:40:17下载
    积分:1
  • MPPT_charger_V2
    This simulink model contains the complete description of building A PV MPPT CHARGER power generation scheme.
    2012-08-12 23:38:40下载
    积分:1
  • Calendar-conversion
    Calendar conversiono为日历转换代码,可以将阳历转变为阴历,也可将阴历转变为阳历(Calendar conversiono for the calendar conversion code, can be transformed into the lunar solar calendar lunar calendar, also can be converted to the Gregorian calendar )
    2015-02-23 18:10:24下载
    积分:1
  • bradley_2
    The brief idea of the algorithm is that every image s pixel is set to black if its brightness is T percent lower than the average brightness of the surrounding pixels in the window of the specified size
    2015-04-21 12:54:55下载
    积分:1
  • kalmanfilter
    maple写的基本kalman算法,可以做入门参考理解(maple write basic kalman algorithm, can be understood to do entry-reference)
    2008-02-28 16:44:59下载
    积分:1
  • DEmatlab
    标准差分进化算法的MATLAB实现,有一个简单的函数,可以直接运行(MATLAB standard differential evolution algorithm to achieve, there is a simple function, can be run directly)
    2010-12-28 16:02:20下载
    积分:1
  • MVDR_QRDLS
    均匀线阵自适应波束形成MVDR算法的matlab实现(realization of DBF based on MVDR)
    2009-06-10 16:53:35下载
    积分:1
  • CameraSelect
    Matlab中选择摄像头,从摄像头得到图像的程序。当系统中有多个webcam时,能够列出并允许用户选择想用的。(Matlab select camera images from the camera to get the procedure. When there are multiple webcam, can list and allows the user to select the desired use.)
    2013-07-27 23:15:15下载
    积分:1
  • communication-technology
    建立数学模型,求解能量最优条件下的分群数量(现代通信技术)。同构网络、同构网络、N节点随机部署,网络范围A*A;距离sink较远,认为所有点到sink距离相等。(A mathematical model, solving the energy clustering under optimal conditions the number of (modern communication technology). Homogeneous network, homogeneous network, N nodes are randomly deployed network-wide A* A far from the sink, that all points equidistant to the sink.)
    2011-10-21 13:21:56下载
    积分:1
  • 696518资源总数
  • 104347会员总数
  • 12今日下载