-
New-Compressed-(zipped)-Folder
Time Division Antenna Switching Using 3 ,4 and 6 Antennas at the trasimitter side and 1 antenna at reciever side using Channel Coding
- 2013-10-21 23:54:26下载
- 积分:1
-
DZ016
基于Matlab的TFT-LCD解码电路的仿真设计,全篇论文,包括相关仿真。(The simulation design, the TFT-LCD decoding circuit based on Matlab this paper, including the related simulation.)
- 2015-04-05 15:41:00下载
- 积分:1
-
nlms-(1)
matlab code for nlms algorithm
- 2011-09-20 07:25:50下载
- 积分:1
-
Writing-Fast-MatLab-Code
逻辑运算等避免冗杂快速写代码的方法 尤其是矩阵数组的经典(fast writing codes)
- 2015-02-02 08:32:20下载
- 积分:1
-
jacobi
说明: calculating using jacobi on matlab numeric
- 2015-03-26 16:37:21下载
- 积分:1
-
DEEC.matble
分簇协议的改进协议DEEC的matlab代码,绝对正确,大家可以下载试试,对学习WSN路由协议很有帮助。(Improved clustering protocol agreement DEEC matlab code, absolutely correct, you can download to try, to learn helpful WSN routing protocol.)
- 2014-01-20 17:29:25下载
- 积分:1
-
cyclic_AR
信号处理,振动方面的,很有用,绝不后悔,帮助很大(Signal processing, vibration issues, useful, never regret, very helpful)
- 2014-02-13 11:46:42下载
- 积分:1
-
fdtd1D_1
通过对麦克斯韦方程进行差分,实现FDTD的一维传输(Maxwell' s equations, differential, transmission of one-dimensional realization FDTD)
- 2012-10-29 22:41:55下载
- 积分:1
-
989879matlap
减震器振动仿真,基于matlap的论文,很重要,对于汽车减振器有很大的学习和帮助(Shock absorber vibration simulation, the paper based on the matlap, is very important, is of great learning and help for automobile shock absorber)
- 2015-04-04 11:09:43下载
- 积分:1
-
优秀论文及配套源码 SVM Short-term-Load-Forecasting
优秀论文及配套源码。首先阐述了负荷预测的应用研究现状,概括了负荷预测的特点及其影响因素,归纳了短期负荷预测的常用方法,并分析了各种方法的优劣;接着介绍了作为支持向量机(SVM)理论基础的统计学习理论和SVM的原理,推导了SVM回归模型;本文采用最小二乘支持向量机(LSSVM)模型,根据浙江台州某地区的历史负荷数据和气象数据,分析影响预测的各种因素,总结了负荷变化的规律性,对历史负荷数据中的“异常数据”进行修正,对负荷预测中要考虑的相关因素进行了归一化处理。LSSVM中的两个参数对模型有很大影响,而目前依然是基于经验的办法解决。对此,本文采用粒子群优化算法对模型参数进行寻优,以测试集误差作为判决依据,实现模型参数的优化选择,使得预测精度有所提高。实际算例表明,本文的预测方法收敛性好、有较高的预测精度和较快的训练速度。(first expounds the recent application research of load forecasting, summarized the characteristics of load forecasting and influencing factors, summed up common methods of short-term load forecasting, and analyzed the advantages and disadvantages of each method then introduced statistical learning theory and the principle of SVM as the basis of support vector machine (SVM ) theory, SVM regression model is derived this paper adopted least squares support vector machine (LSSVM) model, according to the historical load data and meteorological data of a certain area of Zhejiang Taizhou, Analysised the various factors affecting the forecast, summed up the regularity of load change , amended "outliers" in the historical load data,the load forecasting factors to be considered were normalized. The two parameters of LSSVM have a significant impact on the model, but it is still soluted based on the experience currently. So, this paper adopted particle swarm optimization algorithm to optimized )
- 2021-04-01 17:09:08下载
- 积分:1