-
DSSS1
直接序列扩频利用与信息无关的伪随机码,以调制方法将已调制信号的频谱宽度扩展得比原调制信号的带宽宽得多的过程。(Direct sequence spread spectrum has nothing to do with the information of pseudo-random code modulated signal spectrum width modulation method will be extended than the original modulation signal bandwidth is much wider process. )
- 2012-05-13 17:15:18下载
- 积分:1
-
watermarking-based-on-DCT-(matlab)
一种基于DCT变换的图像水印算法,非常适合研究水印的人们共同学习,共同进步。(DCT-based image watermarking algorithm)
- 2011-10-02 10:28:17下载
- 积分:1
-
matlab
matlab 输入输出小例子 输入输出小例子(matlab input/output small example)
- 2013-08-19 17:42:48下载
- 积分:1
-
DP_input_data
unit commitment problem
- 2014-01-14 05:15:05下载
- 积分:1
-
ofdm
产生供选择的16qam 64qamOFDM信号(Generating a signal for the selected 16qam 64qamOFDM)
- 2013-12-17 21:55:25下载
- 积分:1
-
so-good
matlab很好的文档 非常实用 值得收藏 太好了 欢迎下载 好好学习 非常好 (matlab good documentation is very practical worth collecting great welcome to download a good learning very well)
- 2012-11-28 17:13:57下载
- 积分:1
-
error
极化敏感阵列的误差估计矫正函数 可以实现在误差较大的情况下仍然可以准确参数估计(Polarization sensitive array error correction function can be achieved is estimated in the case of error is larger still be accurate parameter estimation)
- 2015-09-23 10:27:46下载
- 积分:1
-
PSO_Wael
粒子群算法(pso)的源代码(matlab)(Particle swarm optimization (pso) source code (matlab))
- 2009-04-24 15:57:32下载
- 积分:1
-
CAZAC_SYN
说明: 此程序主要实现CAZAC序列的OFDM系统同步,该同步可以实现定时同步和载波频率同步。(The programme realizes CAZAC trainning symbol in OFDM systems)
- 2020-11-10 15:39:46下载
- 积分:1
-
fractal-use
分形的练习一
①Koch曲线
用复数的方法来迭代Koch曲线
clear i 防止i被重新赋值
A=[0 1] 初始A是连接(0,0)与(1,0)的线段
t=exp(i*pi/3)
n=2 n是迭代次数
for j=0:n
A=A/3 a=ones(1,2*4^j)
A=[A (t*A+a/3) (A/t+(1/2+sqrt(3)/6*i)*a) A+2/3*a]
end
plot(real(A),imag(A))
axis([0 1 -0.1 0.8])
②Sierpinski三角形
A=[0 1 0.5 0 0 1] 初始化A
n=3 迭代次数
for i=1:n
A=A/2 b=zeros(1,3^i) c=ones(1,3^i)/2
A=[A A+[c b] A+[c/2 c]]
end
for i=1:3^n
patch(A(1,3*i-2:3*i),A(2,3*i-2:3*i), b ) patch填充函数
end
(Fractal
Exercise One
The ① Koch curve
Plural iteration Koch curve
clear i to prevent i is reassigned
A = [0 1] initial A is a connection (0,0) and (1,0) of the segments
t = exp (i* pi/3)
n = 2 n is the number of iterations
for j = 0: n
A = A/3 a = ones (1,2* 4 ^ j)
A = [A (t* A+ a/3) (A/t+ (1/2+ sqrt (3)/6* i)* a) A+2/3* a]
end
plot (real (A), imag (A))
axis ([0 1-0.1 0.8])
② Sierpinski triangle
A = [0 1 0.5 0 0 1] initialized A
n = 3 the number of iterations.
for i = 1: n
A = A/2 b = zeros (1,3 ^ i) c = ones (1,3 ^ i)/2
A = [A A+ [c b] A+ [c/2 c]]
end
for i = 1:3 ^ n
patch (A (1,3* i-2: 3* i), A (2,3* i-2: 3* i), b ) patch filled function
end)
- 2013-03-02 10:03:09下载
- 积分:1