-
McGraw.Hill.MATLAB.Demystified.Apr.2007
Matlab Demustified 2009 one of the best books
- 2009-07-15 21:07:03下载
- 积分:1
-
FastICA_21
说明: 快速独立分量变换,可用于信号特征的提取以及端点检测等,非常好用!(Fast independent component transform, can be used for the extraction of signal characteristics, such as endpoint detection, as well as very easy to use!)
- 2009-07-27 16:44:53下载
- 积分:1
-
Ultrasonic_beam_structure
Mathematic model of acoustic field for ultrasonic transducers according to "Ultrasonic beam structures in fluid media" paper
- 2013-09-10 22:10:05下载
- 积分:1
-
遗传算法程序
说明: 遗传算法是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。遗传算法通常实现方式为一种计算机模拟。对于一个最优化问题,一定数量的候选解(称为个体)的抽象表示(称为染色体)的种群向更好的解进化。传统上,解用二进制表示(即0和1的串),但也可以用其他表示方法。进化从完全随机个体的种群开始,之后一代一代发生。在每一代中,整个种群的适应度被评价,从当前种群中随机地选择多个个体(基于它们的适应度),通过自然选择和突变产生新的生命种群,该种群在算法的下一次迭代中成为当前种群。(Genetic algorithm (GA) is a search algorithm used to solve optimization in computational mathematics. It is one of evolutionary algorithms.
Evolutionary algorithms were originally developed by borrowing phenomena in evolutionary biology, such as heredity, mutation, natural selection and hybridization.
Genetic algorithms are usually implemented as a computer simulation.
For an optimization problem, an abstract representation of a certain number of candidate solutions (called individuals) (called chromosomes) evolves towards a better solution.
Traditionally, solutions are represented in binary (that is, strings of zeros and ones), but other representations are possible.
Evolution begins with a population of completely random individuals, and it happens from generation to generation.)
- 2020-06-07 21:42:11下载
- 积分:1
-
heat1d
solving heat problem by FEM
- 2011-01-20 18:59:47下载
- 积分:1
-
PramaterTest
说明: 此程序为用matlab实现信号特征提取的实验程序,将待处理的一维时间函数赋给work2中的x1tRE,运行work2即可
(This procedure is used to achieve signal feature extraction matlab experimental procedures, will be dealt with one-dimensional function of time assigned to work2 in x1tRE, you can run work2)
- 2008-10-25 11:59:39下载
- 积分:1
-
p-c-a
用于图像识别和特征提取时的主成分分析程序,采用Matlab编写。(for image recognition and feature extraction of principal component analysis procedures, the preparation of Matlab.)
- 2007-03-27 16:19:07下载
- 积分:1
-
chapter5_1
在普通室内环境下录制‘我到北京去’,采样频率为8k用matlab分析这句话的倒谱(Recorded in the general indoor environment ' I went to Beijing' , the sampling frequency for the 8k cepstrum analysis of this sentence, with matlab)
- 2012-05-22 17:26:43下载
- 积分:1
-
路标检测与识别(1)
说明: 采用hog+SVM对路标进行识别,先训练再测试,准确率达到百分之九十四左右。(Hog +SVM is adopted to identify road signs, which is trained first and then tested, with an accuracy rate of about 94 percent.)
- 2020-06-20 09:20:01下载
- 积分:1
-
GA-and-PSO
GA遗传算法与PSO离子群组合算法matlab程序,以下是使用本程序的简单介绍与使用步骤
1)修改设计变量个数
NPar变量定义的是设计变量个数,本例为8,使用时需根据自己实际情况进行修改。
2)修改设计变量的上下限
VarLow 与VarHign定义的是设计变量的上下限,使用时需根据自己实际情况进行修改。记住,变量的维数,要与1)变量个数一致哦。
3)修改FunName
变量FunName定义的是优化目标函数值的计算函数,根据自己实际情况改成自己的函数名。
4)修改最大迭代次数MaxIterations
要根据自己的问题实际,通过试算找出合适的MaxIterations数。
如果,你对GA与PSO比较精通,还可以通过修改KeepPercent、CrossPercent来提高算法的效率,但是对于初学者来说,上述的步骤与操作已经足够,所以其它不再赘述。祝你好运!
(GA genetic algorithm and PSO Ion combination algorithm matlab program, the following is a brief description of the use of this procedure with the use of step a) to modify the design variables are defined by the number of NPar variable number of design variables, in this case eight, when used according to need their actual situation changes. 2) modify the design variables on the lower limit is defined VarLow and VarHign upper and lower limits of design variables need to be modified when used according to their actual situation. Remember, dimensions variable, the number to be with a) variable consistency oh. 3) Modify FunName variable FunName definition is to optimize the objective function value calculation function, according to their actual situation into their own function name. 4) Modify the maximum number of iterations MaxIterations issue according to their actual, through spreadsheets to find the appropriate number MaxIterations. If you are more proficient GA and PSO, but also can)
- 2020-10-15 21:07:33下载
- 积分:1