-
Cramer-rao_bounds
多种信道的研究论文,尤其是cramer通道的详细研究与仿真。(Multi-channel research papers, in particular a detailed study of cramer channel and simulation.)
- 2010-06-28 08:58:30下载
- 积分:1
-
face-recongnise
说明: 摄像头采集,人脸识别 更改了matlab的simulink原例子,可以直接从usb摄像头实时采集图像,进行人脸识别。
(Camera capture, face the simulink matlab changed the original example, directly from the usb camera capture images in real time, for face recognition.)
- 2021-01-12 14:08:48下载
- 积分:1
-
mixfun
基于等式约束和不等式约束的非线性规划的混合型惩罚函数优化方法(Based on equality and inequality constrained nonlinear programming mixed penalty function optimization)
- 2013-10-01 22:03:05下载
- 积分:1
-
minRosen
带约束条件的梯度投影法matlab程序,经过实测,可以使用(With the constraints of the gradient projection method matlab program, after the measurement, you can use)
- 2020-12-24 11:19:05下载
- 积分:1
-
triangle
this program shows temperature of the initional points
- 2015-02-27 06:23:39下载
- 积分:1
-
maikeerxun
基于matlab的迈克尔逊干涉仿真,帮助大家学习光的干涉(Based on the matlab simulation of Michelson interferometers, help you learn the interference of light
)
- 2015-06-08 17:17:13下载
- 积分:1
-
PID
PID控制算法的MATLAB仿真其中参数,Kp,Ki,Kd分别为PID控制器的比例、微分和积分参数。(PID control algorithm of the MATLAB simulation in which the parameters, Kp, Ki, Kd are the proportion of PID controller, differential and integral parameters.)
- 2020-07-06 21:38:58下载
- 积分:1
-
Untitled2
Matlab code that has an exercise about signals processing.
- 2009-06-04 06:20:27下载
- 积分:1
-
direct-method-solve-linear-equation
基于MATLAB环境下的运用直接法求解线性方程组的对应的代码 简单易学 便于初学者消化使用(Based on MATLAB environment using a direct method for solving linear equations corresponding code is easy to learn for beginners to use digest)
- 2013-09-15 00:07:38下载
- 积分:1
-
rjMCMCsa
可逆跳跃马尔科夫蒙特卡洛贝叶斯模型选择,主要用于神经网络(Reversible Jump MCMC Bayesian Model Selection
This demo demonstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar-xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.)
- 2013-03-11 22:29:52下载
- 积分:1