登录
首页 » MathCAD » Desktop

Desktop

于 2014-01-04 发布 文件大小:1KB
0 169
下载积分: 1 下载次数: 2

代码说明:

  快速FFT的算法,在做数字信号处理时,需要做频谱分析时需要用到的快速傅里叶变换的算法。(Fast FFT algorithm)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • mlcentralfiles123
    Vehicle Climate Control System
    2010-11-18 07:11:21下载
    积分:1
  • MATLAB_SSB
    通信原理上机实验-基于Matlab的模拟幅度调制系统-SSB调制解调系统程序代码(On communication theory machine experiment- Matlab-based simulation system-SSB modulation amplitude modulation and demodulation system code)
    2014-01-02 17:32:16下载
    积分:1
  • simfahm
    cigre_b457_dc_test_systems
    2017-10-19 21:14:52下载
    积分:1
  • TEmatlab
    TE(田纳西-伊斯曼)系统的源代码,对故障诊断仿真具有一定的意义(TE (Tennessee- Eastman) system source code, simulation of fault diagnosis of some significance)
    2010-08-23 17:11:27下载
    积分:1
  • dctcompr
    基于DCT变换的图像压缩,分别给出了灰度图和真彩图的压缩方法。(DCT-based image compression, respectively, are given grayscale and true color pictures of the compression method.)
    2010-01-08 10:29:57下载
    积分:1
  • bu_reactive_power_optimization
    配电网无功优化算法,补上了对应的论文文献。(Reactive Power Optimization, make up the corresponding paper documents.)
    2020-07-01 11:00:02下载
    积分:1
  • Rapson_numerical
    In this experiment our equation is f(x0)=x^3-3x-1.We have to find the real root of this equation between 1 and 2.The programme has been shown in the"new_rap" We have done the comparison between the Newton Rapson method the false position method
    2011-02-07 11:35:31下载
    积分:1
  • Chapter2Code
    matlab adaptive filter project codes
    2011-09-02 13:16:15下载
    积分:1
  • MatlabCoorelatedRV
    通信理论分析中,产生Nakagami-m 变量的随机数,并与理论PDF和CDF比较,以及第N个最大的Nakagami-m变量的仿真与理论PDFCDF的验证(he random numbers that produce the Nakagami-m variables are compared with the theoretical PDF and CDF, and the Nth Max and PDF/CDF of the largest Nakagami-m variables are verified by simulation and theory.)
    2020-11-27 15:39:30下载
    积分:1
  • GSO and AS
    说明:  在学习优化算法的过程中,为快速了解算法求解过程,整理出这两个算法。通过蚁群算法和萤火虫算法对测试函数进行求解,以图片的形式展示算法迭代过程中蚂蚁或萤火虫的移动过程,了解算法特点。相对而言蚁群算法更快,但不一定能找到最优解。(By learning the optimization algorithm, the two algorithms are sorted out. The ant colony algorithm and the firefly algorithm are used to solve the test function. The moving process of the ant or firefly in the iterative process of the algorithm is shown in the form of pictures. To understand the characteristics of the algorithm, the ant colony algorithm is relatively faster, but it is not necessarily able to find the optimal solution.)
    2019-12-16 11:01:27下载
    积分:1
  • 696518资源总数
  • 105219会员总数
  • 11今日下载