-
61
说明: 提出了一种结合SVD的小波变换方法,对其在外弹道测量数据中的野值剔除进行了研究。对观测数据进行小波分解,将小波分解后的近似分量和细节分量组合实现相空间重构,作为SVD方法的输入观测矩阵,根据奇异
熵增量准则,对奇异值进行筛选,根据SVD逆变换重构原信号。这一方法克服了Hankel矩阵相空间构建方法数据
端点失真问题。以小波分解后分量重构的相空间可以满足正交性,进一步提高了SVD进行数据降噪和野值检测的精度。仿真数据和试验数据处理结果证明了这一方法的有效性。(Proposed a method of combining the SVD wavelet transform its outer ballistic measurement data in excluding outliers were studied. Observational data on wavelet decomposition, wavelet decomposition of the approximate combined component and detail component to achieve the phase space reconstruction, as the input observation matrix SVD method, based on singular entropy increment standards, singular value filter, according to the inverse transform heavy SVD structure of the original signal. This approach overcomes the Hankel matrix phase space construction method data endpoint distortion. Wavelet decomposition component of reconstruction phase space satisfy orthogonality, to further improve the SVD for data noise reduction and outlier detection accuracy. Simulation data and experimental data processing results prove the effectiveness of this approach.)
- 2013-06-02 11:10:21下载
- 积分:1
-
Untitled
自己编写离散小波变换与离散小波反变换程序对一幅图像做2级小波分解(离散小波变换)与合成(离散小波反变换)(Write your own discrete wavelet transform and discrete wavelet inverse transform procedure on an image to do two wavelet transform (DWT) and synthesis (discrete wavelet inverse transform))
- 2010-06-06 15:33:00下载
- 积分:1
-
02
说明: 2.1 傅里叶变换
2.1.1 经典傅里叶变换
2.1.2 傅里叶变换的基本性质
2.1.3 快速傅里叶变换
2.1.4 短时傅里叶变换
2.2 小波分析与多分辨率分析的历史
2.3 小波分析与傅里叶变换的对比
2.4 小波变换
2.4.1 连续小波变换
2.4.2 离散小波变换
2.4.3 高维小波连续变换
2.5 常用小波基函数
2.5.1 小波函数
2.5.2 小波函数系
2.5.3 复数小波
2.6 构造紧支撑正常小波基
2.7 多分辨率分析与小波构造
2.8 分析小波包
2.8.1 小波包的定义及性质
2.8.2 分解小波包的空间
2.8.3 小波包算法(2.1 Fourier transform
2.1.1 classical Fourier transform
2.1.2 The basic properties of the Fourier transform
2.1.3 Fast Fourier Transform
2.1.4 short time Fourier transform
2.2 wavelet analysis and multi-resolution analysis of the history of
2.3 Wavelet Analysis and comparison of the Fourier transform
2.4 Wavelet Transform
2.4.1 Continuous Wavelet Transform
2.4.2 Discrete Wavelet Transform
2.4.3 Continuous high-dimensional wavelet transform
2.5 Common wavelet basis function
2.5.1 wavelet function
2.5.2 Department of wavelet function
2.5.3 Complex Wavelet
2.6 Construction of compactly supported wavelets normal
More than 2.7 resolution analysis and wavelet construction
2.8 Analysis of Wavelet Packet
2.8.1 Definition and properties of wavelet packet
2.8.2 wavelet packet decomposition space
2.8.3 Wavelet Packet Algorithm)
- 2013-10-19 16:34:13下载
- 积分:1
-
小波对图像的二次压缩.
说明: 给出了在matlab环境下的源代码,经过了上机调试,可以实现小波变换对图像的二次压缩!(given Matlab environment in the source code, after the Machine, can achieve a wavelet transform of the second image compression!)
- 2005-09-19 10:59:51下载
- 积分:1
-
matlab小波变换程序
小波变换(wavelet transform,WT)是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的"时间-频率"窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,能对时间(空间)频率的局部化分析,通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。(Wavelet transform (WT) is a new transform analysis method. It inherits and develops the idea of localization of short-time Fourier transform and overcomes the shortcomings that window size does not vary with frequency. It can provide a frequency-dependent The Time-Frequency window is ideal for time-frequency analysis and processing of signals. Its main feature is that by transforming some features that can fully highlight some aspects of the problem, the localization of the time (space) frequency can be analyzed, and the signal (function) can be gradually and multi-scale refined by the scaling operation, finally reaching the high frequency Time subdivision, frequency subdivision at low frequencies, can automatically adapt to the requirements of time-frequency signal analysis, which can focus on any details of the signal to solve the difficulties of Fourier transform has become a major breakthrough in the scientific method since Fourier transform.)
- 2018-03-05 14:32:13下载
- 积分:1
-
xinhaochuli
信号处理小波分析
1)计算信号的小波变换。
2)求出模极大曲线。
3)计算其中两个奇异点的Lipschitz指数。
(Signal processing wavelet analysis 1) the calculation of wavelet transform signals. 2) calculated curve of modulus maxima. 3) the calculation of which two singular points of Lipschitz index.)
- 2021-01-29 12:58:40下载
- 积分:1
-
shortwave
matlab提升小波变换与应用初步,包括小波变换的一些改进(the matlab enhance wavelet transform and application of the preliminary)
- 2012-03-23 09:42:23下载
- 积分:1
-
emd
经验模态分解程序包
希尔伯特黄变换程序的matlab程序仅供参考(Empirical mode decomposition package
Hilbert Huang transform program)
- 2017-09-03 15:10:58下载
- 积分:1
-
mulwave
此函数基于二进小波的分解、重构的图像去噪(This function is based on the dyadic wavelet decomposition, reconstruction of the image denoising)
- 2009-05-12 21:52:38下载
- 积分:1
-
wavelet
说明: matlab 小波分析源码 小波去噪 仿真分析(matlab source wavelet analysis wavelet denoising simulation analysis)
- 2008-11-21 22:31:07下载
- 积分:1