登录
首页 » matlab » SRC_Test

SRC_Test

于 2015-04-13 发布 文件大小:79KB
0 74
下载积分: 1 下载次数: 19

代码说明:

  Sparse representation based classification (SRC John Wright CVPR2009) 实现(Sparse representation based classification (SRC John Wright CVPR2009)‘s codes)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • GallettoV1260
    immo killer for audi vw seat skoda
    2010-11-23 05:55:54下载
    积分:1
  • papr-ofdm
    m-file调查高功率放大器的影响,channelnoise在ofdm信号,当时介绍卡由于一个paprreductionmethod减少hpa效果。 (m-file investigation of high-power amplifier, channelnoise in ofdm signal, when introduced to reduce card due to a paprreductionmethod hpa effects.)
    2011-04-27 09:00:18下载
    积分:1
  • pid
    基于Z-N的PID参数整定,代码简单实用,适合初学者使用(ZN-based PID parameter tuning, the code is simple and practical, suitable for beginners)
    2020-11-27 20:39:30下载
    积分:1
  • model10b
    数学建模清华数模讲义\model10b (Mathematical modeling Qinghua digital-analog handouts model10b)
    2010-01-13 23:25:57下载
    积分:1
  • lab62-(2)
    bandpass filters
    2011-02-04 03:03:18下载
    积分:1
  • mulan
    mulan实现多标签分类,内含多个重要的分类器,乃是分类中的精华(Mulan implementation of multi label classification, containing multiple important classifier, is the essence of the classification)
    2020-12-17 09:59:13下载
    积分:1
  • lingtui_v10
    小波包分析提取振动信号中的特征频率,利用matlab GUI实现的串口编程例子,自写曲率计算函数 。( Wavelet packet analysis to extract vibration signal characteristic frequency, Use serial programming examples matlab GUI implementation, Since writing the curvature calculation function.)
    2017-01-16 12:06:20下载
    积分:1
  • gpml-matlab-v1.3-2006-09-08
    说明:  高斯过程(GP)模型中推理和预测的实现。它实现了在《Rasmussen & Williams:机器学习的高斯过程》(麻省理工学院出版社,2006)和《Nickisch & Rasmussen:二进制高斯过程分类的近似》(JMLR, 2008)中讨论的算法。该函数的优点在于灵活性、简单性和可扩展性。该函数具有一定的灵活性,首先通过定义均值函数和协方差函数来确定遗传算法的性质。其次,它允许指定不同的推理过程,如精确推理和期望传播(EP)。第三,它允许指定似然函数,如高斯函数或拉普拉斯函数(用于回归)和累积逻辑函数(用于分类)。简单性是通过一个简单的函数和紧凑的代码实现的。可扩展性是通过模块化设计来保证的,允许为已经相当广泛的推理方法、均值函数、协方差函数和似然函数库轻松添加扩展。(Gaussian Processes for Machine Learning , the MIT press, 2006 and Nickisch & Rasmussen: Approximations for Binary Gaussian Process Classification , JMLR, 2008. The strength of the function lies in its flexibility, simplicity and extensibility. The function is flexible as firstly it allows specification of the properties of the GP through definition of mean function and covariance functions. Secondly, it allows specification of different inference procedures, such as e.g. exact inference and Expectation Propagation (EP). Thirdly it allows specification of likelihood functions e.g. Gaussian or Laplace (for regression) and e.g. cumulative Logistic (for classification). Simplicity is achieved through a single function and compact code.)
    2020-02-26 20:39:48下载
    积分:1
  • radarprocess
    It s about radar signal procesing .Matlab code
    2008-07-07 21:50:46下载
    积分:1
  • xiyiji
    智能洗衣机的模糊控制法则及隶属函数,可载入模块中进行使用(Fuzzy control rules and membership functions of the smart washing machines, you can load the module using the)
    2012-08-10 12:39:52下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载