登录
首页 » matlab » esprit

esprit

于 2012-11-22 发布 文件大小:1KB
0 89
下载积分: 1 下载次数: 27

代码说明:

  这个程序主要是通过经典ESPRI算法和ESPRIT_SVD算法来实现DOA估计(This program is mainly achieved by the classic ESPRI algorithm and ESPRIT_SVD algorithm DOA Estimation)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • replot
    matlab matlab matlab matlab matlab函数(matlab matlab matlab matlab matlab function)
    2012-04-29 19:19:19下载
    积分:1
  • TCM+8PSK
    TCM 8psk 的仿真误码率图 包括解码译码等(Simulation error rate chart of TCM)
    2018-10-19 21:27:39下载
    积分:1
  • function-approximating
    函数逼近教学例子,可以选择不同训练算法。(Function approximation teaching example, you can choose different training algorithms.)
    2013-12-12 01:17:48下载
    积分:1
  • tuxiatiqung
    matlab的楚翔处理,色彩增强,二值滤波,旋转放大等功能,图像识别(the matlab Chu Xiang processing, color enhancement, binary filtering, rotation, zoom, image recognition)
    2013-05-16 21:59:23下载
    积分:1
  • Possion
    用有限元法求解三角形形区域上的Possion方程(using the finite element method triangle-shaped region of Possion equation)
    2007-07-08 21:43:19下载
    积分:1
  • dualcodes
    对偶复树小波以及去噪, 包含1维二维三维的程序实现(Dual tree complex wavelet and the noise, including the one-dimensional two-dimensional three-dimensional program)
    2007-08-23 15:36:03下载
    积分:1
  • GAFMAX
    遗传算法 求下列函数的最大值 obj(x)=x.*(10-x).*sin(2*pi*x), xin[0,10].(Optimization problem by genetic algorithm of a function obj(x)=x.*(10-x).*sin(2*pi*x), xin[0,10].)
    2009-11-14 00:05:47下载
    积分:1
  • MatLabbiancheng
    说明:  用于MATLAB编程及开发,解决实际问题,(For MATLAB programming and development, to solve practical problems,)
    2010-04-24 09:46:52下载
    积分:1
  • StewartControllers
    介绍了并联机器人的仿真功能,尤其的机器人的定位与导航功能(Describes the simulation parallel robot, especially robot positioning and navigation functions)
    2014-09-06 21:35:28下载
    积分:1
  • WindyGridWorldQLearning
    Q-learning (Watkins, 1989) is a simple way for agents to learn how to act optimally in controlled Markovian domains. It amounts to an incremental method for dynamic programming which imposes limited computational demands. It works by successively improving its evaluations of the quality of particular actions at particular states. This paper presents and proves in detail a convergence theorem for Q,-learning based on that outlined in Watkins (1989). We show that Q-learning converges to the optimum action-values with probability 1 so long as all actions are repeatedly sampled in all states and the action-values are represented discretely. We also sketch extensions to the cases of non-discounted, but absorbing, Markov environments, and where many Q values can be changed each iteration, rather than just one.
    2013-04-19 14:23:35下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载