-
code_absorb_MC
此代码为显著性检测代码,显著性检测效果不错(This code is a significant detection code to detect significant good results)
- 2014-08-13 16:14:44下载
- 积分:1
-
cthard
基于轮廓波变换的图像硬阈值去噪程序,并通过等效视数、斑点噪声指数进行评价(Hard-based image thresholding wavelet transform program outline and uated by ENL, speckle noise figure)
- 2015-06-12 19:20:19下载
- 积分:1
-
杂草识别
说明: 根据一幅杂草和作物混合的图像可以识别出图像中的杂草(Weeds in the image can be identified according to a mixed image of weeds and crops)
- 2021-04-28 21:58:43下载
- 积分:1
-
Morph
数字图像处理中的基本形态学处理,如腐蚀、膨胀、开操作、闭操作等实现的源代码。可以自定义结构元素的形状。(Digital image processing in the basic morphology processing, such as corrosion, swelling, open operation and close operation to achieve the source code. You can customize the shape of structural elements.)
- 2009-01-06 09:38:40下载
- 积分:1
-
BEMD_code
把一幅图像进行经验模式分解,结果为不同频率分量的IMF,用于希尔伯特黄变换,图像去噪等(empirical mode decomposition)
- 2020-07-04 01:40:01下载
- 积分:1
-
14、字典学习
经典的KSVD图像字典学习,matlab 代码,有注释,亲测可用(The classic KSVD image dictionary learning, matlab code, include notes, test available)
- 2019-05-31 09:07:45下载
- 积分:1
-
lct_final
基于线性正则变换与菲涅尔变换的图形加密方法,实现广义线性正则变换的加密解密过程。(Based on linear canonical transformation and Fresnel transform graphics encryption methods, implementation of generalized linear canonical transformation encryption decryption process.
)
- 2016-09-12 19:33:08下载
- 积分:1
-
marked_image
数字水印技术的matlab实现,一个简单的水印算法,注意自己修改图片名(Digital watermark technology matlab to achieve a simple watermarking algorithm, pay attention to their own to modify the name of the picture)
- 2012-09-14 16:35:33下载
- 积分:1
-
TVdenoise
全变分去噪
J=tv(I,iter,dt,ep,lam,I0)
输入: I - 灰度图像,
iter - 迭代次数 [1],
dt - 时间步长 [0.2],
ep - 提升参数epsilon [1],
lam - 保真项 lambda [0],
I0 - 输入噪声图像 [I0=I]
([]中的是缺省值)( 全变分去噪
J=tv(I,iter,dt,ep,lam,I0)
输入: I - 灰度图像,
iter- 迭代次数 [1],
dt - 时间步长 [0.2],
ep - 提升参数epsilon [1],
lam - 保真项 lambda [0],
I0 - 输入噪声图像 [I0=I]
([]中的是缺省值))
- 2010-10-22 17:29:44下载
- 积分:1
-
利用SVM或者其他机器学习算法进行分类识别 LBP
(1)计算图像中每个像素点的LBP模式(等价模式,或者旋转不变+等价模式)。
(2)然后计算每个cell的LBP特征值直方图,然后对该直方图进行归一化处理(每个cell中,对于每个bin,h[i]/=sum,sum就是一副图像中所有等价类的个数)。
(3)最后将得到的每个cell的统计直方图进行连接成为一个特征向量,也就是整幅图的LBP纹理特征向量;
然后便可利用SVM或者其他机器学习算法进行分类识别了。((1) calculate the LBP pattern of each pixel in the image (equivalent mode, or rotation invariant + equivalent mode).
(2) then the LBP eigenvalue histogram of each cell is calculated, and then the histogram is normalized (for each cell, for each bin, h[i]/=sum, sum is the number of all the equivalent classes in a pair of images).
(3) finally, the statistical histogram of each cell is connected into a feature vector, that is, the LBP texture feature vector of the whole picture.
Then, SVM or other machine learning algorithms can be used for classification and recognition.)
- 2020-07-01 20:00:02下载
- 积分:1