登录
首页 » matlab » ACTIVE-CLAMP-FLYBACK-FORWARD-CONVERTER

ACTIVE-CLAMP-FLYBACK-FORWARD-CONVERTER

于 2014-01-04 发布 文件大小:54KB
0 169
下载积分: 1 下载次数: 50

代码说明:

  GENERAL POWER ELECTRONICS SIMULIK MODELS

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • DIJKSTRA
    最 短 路 dijkstra 算 法 mex 程 序,图论中的最短路径!(Dijkstra shortest path algorithm mex procedures, graph theory of the shortest path!)
    2007-07-27 16:01:31下载
    积分:1
  • project6
    Adaboost. Binary Tree. Entropy. MATLAB. Machine learning algorithms code.
    2015-04-08 11:20:19下载
    积分:1
  • 1807.01622
    说明:  深度神经网络在函数近似中表现优越,然而需要从头开始训练。另一方面,贝叶斯方法,像高斯过程(GPs),可以利用利用先验知识在测试阶段进行快速推理。然而,高斯过程的计算量很大,也很难设计出合适的先验。本篇论文中我们提出了一种神经模型,条件神经过程(CNPs),可以结合这两者的优点。CNPs受灵活的随机过程的启发,比如GPs,但是结构是神经网络,并且通过梯度下降训练。CNPs通过很少的数据训练后就可以进行准确的预测,然后扩展到复杂函数和大数据集。我们证明了这个方法在一些典型的机器学习任务上面的的表现和功能,比如回归,分类和图像补全(Deep neural networks perform well in function approximation, but they need to be trained from scratch. On the other hand, Bayesian methods, such as Gauss Process (GPs), can make use of prior knowledge to conduct rapid reasoning in the testing stage. However, the calculation of Gauss process is very heavy, and it is difficult to design a suitable priori. In this paper, we propose a neural model, conditional neural processes (CNPs), which can combine the advantages of both. CNPs are inspired by flexible stochastic processes, such as GPs, but are structured as neural networks and trained by gradient descent. CNPs can predict accurately with very little data training, and then extend to complex functions and large data sets. We demonstrate the performance and functions of this method on some typical machine learning tasks, such as regression, classification and image completion.)
    2020-06-23 22:20:02下载
    积分:1
  • QPSKRayleighchannel
    QPSK调制解调技术在瑞利信道中的研究分析。(QPSK modulation and demodulation in Rayleigh Channel analysis.)
    2010-09-01 22:20:31下载
    积分:1
  • MST_Kruskal
    Implements Minimum Search Tree using Kruskal Algorithm
    2009-04-11 20:00:59下载
    积分:1
  • SVM
    In this paper, we show how support vector machine (SVM) can be employed as a powerful tool for $k$-nearest neighbor (kNN) classifier. A novel multi-class dimensionality reduction approach, Discriminant Analysis via Support Vectors (SVDA), is introduced by using the SVM. The kernel mapping idea is used to derive the non-linear version, Kernel Discriminant via Support Vectors (SVKD). In SVDA, only support vectors are involved to obtain the transformation matrix. Thus, the computational complexity can be greatly reduced for kernel based feature extraction. Experiments carried out on several standard databases show a clear improvement on LDA-based recognition
    2010-02-20 01:10:17下载
    积分:1
  • Batch-generate-grd
    surfer应用软件中生成图片用的 surfer批量生成grd,(Batch generate grd)
    2012-01-24 15:54:08下载
    积分:1
  • gsm
    该程序依据GSM的调制参数,建立了GSM调制方式在加性高斯白噪声信道中的传输性能测试模型!(The procedure according to the GSM modulation parameter of the GSM modulation scheme established the additive white Gaussian noise channel transmission performance test model!)
    2013-05-24 21:48:58下载
    积分:1
  • SAMCF
    地球化学数据处理一种常见算法SAMCF,对于识别弱小异常有较大价值(a widely-used method named SAMCF to identify weak anomaly,which has been acknowledged )
    2014-02-20 15:48:47下载
    积分:1
  • cyc-bpsk-MATLAB
    认知无线电 matlab检测方针 能量检测 毕业设计 (Cognitive radio energy detection matlab test graduation policy)
    2011-06-22 20:53:21下载
    积分:1
  • 696518资源总数
  • 105171会员总数
  • 15今日下载