-
ANN
说明: ANN基本知识和应用课件,MATLAB ANN源代码(ANN basic knowledge and application of courseware, MATLAB ANN source code)
- 2008-11-14 17:22:28下载
- 积分:1
-
Filtrer
codage programmes pour la parole
- 2010-05-10 23:33:05下载
- 积分:1
-
Digital-baseband-system
数字基带系统将数字信号从时域上看时数字滚降,需要画出滚降前后的波形展示出来。频域上带宽变化了。输入滤波器之前的波形与采样判决之后的波形。采样判决前的频谱。
采样判决后的码型。
2、眼图(采样判决之前的眼图)(信噪比大眼图清晰)
3、误码曲线,(横坐标时信噪比,纵坐标时误码率)
4、Arfa变化对误码特性的影响,变好还是变差(变好),眼图清晰度变化(清晰),传递函数的带宽的变化。(带宽越大)(1.Digital baseband system point of view the digital signal from the time domain when the number of roll-off, you need to draw the waveform displayed before and after the roll-out. The frequency domain, the bandwidth change. Input filter and sample ruling before the wave after wave. Sample pre-judgment spectrum.
Sampling pattern after the verdict.
2, the eye diagram (eye before sampling decision) (SNR big eye clear)
3, the error curve (abscissa when the signal to noise ratio, bit error rate when the vertical axis)
4, Arfa impact of change on BER performance, get better or worse (getting better), change of eye-definition (clarity), the transfer function of the bandwidth changes. (The greater the bandwidth))
- 2011-06-03 23:04:22下载
- 积分:1
-
FIR
FIR滤波器中汉宁窗和布莱克曼窗幅频特性曲线和相频特性曲线对比(FIR filter Hanning window and Blackman window of amplitude-frequency curve and phase frequency response curve compared)
- 2020-07-01 14:20:01下载
- 积分:1
-
vehicle-Tracking-System-Comeplte-Web-Application
Appache Web Application complete for online vehicle tracking system ............ hyderabad india
- 2015-01-14 19:08:33下载
- 积分:1
-
comb
这是关于没分燃烧的udf,同学们可以借鉴,利用的是二阶矩模型(this is a combustion udf,which was using the second ju model ,you can use it for referance)
- 2014-01-22 20:27:14下载
- 积分:1
-
wave1
Matlab;二维小波时频图;图像;二维;时频分析;结决问题(Matleb;picture;wave;time-frequency analysis)
- 2015-11-13 17:47:25下载
- 积分:1
-
myex1
用bp网络 实现神经网络学习算法 可以在matlab直接运行 其中有些参数可以自由根据情况改动(bp)
- 2010-01-12 11:13:47下载
- 积分:1
-
NewK-means-clustering-algorithm
说明: 珍藏版,可实现,新K均值聚类算法,分为如下几个步骤:
一、初始化聚类中心
1、根据具体问题,凭经验从样本集中选出C个比较合适的样本作为初始聚类中心。
2、用前C个样本作为初始聚类中心。
3、将全部样本随机地分成C类,计算每类的样本均值,将样本均值作为初始聚类中心。
二、初始聚类
1、按就近原则将样本归入各聚类中心所代表的类中。
2、取一样本,将其归入与其最近的聚类中心的那一类中,重新计算样本均值,更新聚类中心。然后取下一样本,重复操作,直至所有样本归入相应类中。
三、判断聚类是否合理
采用误差平方和准则函数判断聚类是否合理,不合理则修改分类。循环进行判断、修改直至达到算法终止条件。(NewK-means clustering algorithm ,Divided into the following several steps:
A, initialize clustering center
1, according to the specific problems, from samples with experience selected C a more appropriate focus the sample as the initial clustering center.
2, with former C a sample as the initial clustering center.
3, will all samples randomly divided into C, calculate the sample mean, each the sample mean as the initial clustering center.
Second, initial clustering
1, according to the sample into the nearest principle clustering center represents the class.
2, as this, take the its recent as clustering center of that category, recount the sample mean, update clustering center. And then taking off, as this, repeated operation until all samples into the corresponding class.
Three, judge clustering is reasonable
Adopt error squares principles function cluster analysis.after clustering whether reasonable, no reasonable criterion revisio)
- 2011-04-06 20:45:56下载
- 积分:1
-
cnn
说明: matlab的自适应神经网络CNN的实现(adaptive neural network matlab implementation of CNN)
- 2010-04-28 10:35:38下载
- 积分:1