-
The-Registered-DIPUM-Toolbox-2.0.1
这是 Registered DIPUM Toolbox v2.0.1 m code 版本 对图像处理非常有用(This is the Registered DIPUM Toolbox v2.0.1 m code version is very useful for image processing)
- 2013-10-22 00:59:34下载
- 积分:1
-
cd857
最小均方误差等算法的MSE的计算,关于非线性离散系统辨识,有信道编码,调制,信道估计等。( Minimum mean square error MSE calculation algorithm, Nonlinear discrete system identification, Channel coding, modulation, channel estimation.)
- 2017-03-28 18:23:47下载
- 积分:1
-
bpsk_wumalvfangzhen
BPSK系统的误码率仿真的详细的matlab程序~~~~~~~(BPSK BER simulation of the detailed matlab program ~~~~~~~)
- 2011-07-09 16:56:56下载
- 积分:1
-
fiuning
线性调频脉冲压缩的Matlab程序,音频信号通过LM386放大,关于神经网络控制。( LFM pulse compression of the Matlab program, LM386 audio signal amplification, On neural network control.)
- 2016-08-06 18:03:07下载
- 积分:1
-
m121
Matlab神经网络工具箱应用简介,Matlab神经网络工具箱应用简介(Matlab neural network toolbox Application, Matlab Neural Network Toolbox Application)
- 2008-12-30 20:00:08下载
- 积分:1
-
RLS
RLS算法去除加噪声音乐程序,效果比较好,有图为证。(RLS algorithm to remove noise adding music program, the effect is better, has a license to the graph.
)
- 2013-12-18 10:20:11下载
- 积分:1
-
Midamble_Generation
这是gsm系统中midable数据生成的代码matlab仿真程序,上传给大家学习和参考。(This is a gsm system midable data generated code matlab simulation program, upload for everyone to study and reference.)
- 2010-05-05 20:49:51下载
- 积分:1
-
9009164_LRP
an lr-p implemention with matlab
- 2012-07-01 03:11:57下载
- 积分:1
-
Abgabe01
Perceptron and linear regression for linear separable datasets.
Code is documented in English and report in German.
- 2014-12-07 19:39:04下载
- 积分:1
-
matlab
聚类算法,不是分类算法。分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。这里的k-means聚类,是事先给出原始数据所含的类数,然后将含有相似特征的数据聚为一个类中。所有资料中还是Andrew Ng介绍的明白。首先给出原始数据{x1,x2,...,xn},这些数据没有被标记的。初始化k个随机数据u1,u2,...,uk。这些xn和uk都是向量。根据下面两个公式迭代就能求出最终所有的u,这些u就是最终所有类的中心位置。(Clustering algorithm, not a classification algorithm. Classification algorithm is to give a figure, and then determine the data belonging to a specific class of good which category. Clustering algorithm is to give a lot of raw data, and then through the algorithm which has similar characteristics data together as a class. Here k-means clustering, is given in advance the number of classes contained in the raw data, then the data contain similar characteristics together as a class. All information presented in or Andrew Ng understand. Firstly, raw data {x1, x2, ..., xn}, the data is not labeled. K random initialization data u1, u2, ..., uk. These are the vectors xn and uk. According to the following two formulas can be obtained final iteration all u, u is the ultimate all these classes the center position.)
- 2014-02-18 09:59:02下载
- 积分:1