登录
首页 » matlab » bp

bp

于 2010-06-03 发布 文件大小:216KB
0 131
下载积分: 1 下载次数: 0

代码说明:

说明:  implementation of belief propagation algorithm in matlab

文件列表:

sigpromu-org-document-617.pdf,288849,2010-06-03

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Duda_book_patten_recgnition_computer_experiment_Ma
    Duda教授出的书《模式分类》课后上机题,Matlab源代码和答案(Professor Duda out of the book 《Pattern Classification》,after-school-on question, Matlab source code and answers)
    2010-12-12 16:24:52下载
    积分:1
  • pptMATLAB
    说明:  用matlab处理图像的入门函数。包括图像读取,图像叠加,增强等。(analysis image signal using matlab method )
    2010-04-29 14:48:03下载
    积分:1
  • CLGRAPH12
    C++ Graphics Class Library for MS Windows
    2014-11-12 02:29:03下载
    积分:1
  • learnmatlab
    说明:  适合Matlab的初学者,主要讲了Matlab的一些基础知识,都很基本的。(Matlab for the beginner, the main speech of some basic knowledge of Matlab, very basic.)
    2008-09-09 19:45:01下载
    积分:1
  • SSC_OLTCregtransformer
    OLTC的仿真源文件,可用于电压中长期稳定问题的分析,涉及分接头的转换。(OLTC simulation source files that can be used long-term voltage stability analysis, involving point conversion connector.)
    2015-12-15 00:53:06下载
    积分:1
  • ece4305_code2
    DBPSK transreceiver design model using simulink
    2013-01-11 01:34:16下载
    积分:1
  • roommap
    扫地机器人的一种路径规划算法,内螺旋法,首先构建了房间地图,然后遍历了房间。(A path planning algorithm sweeping robot, spiral method, first built room map, then traverse the room.)
    2021-03-08 10:59:28下载
    积分:1
  • PMC
    problem of neuronal networks : perceptron multicouche
    2010-01-28 22:53:02下载
    积分:1
  • MyKmeans
    实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。 缺点:产生类的大小相差不会很大,对于脏数据很敏感。 改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。步骤: 1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 以下是循环的: 2,将余下的对象分到各个类中去(根据与medoid最相近的原则); 3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。 4,这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。(achieving K-mean clustering algorithms : K-means algorithm : given the number of Class K, n will be assigned to target K to 000 category, making target category of the similarity between the largest category of the similarity between the smallest. Disadvantages : class size have no great difference for dirty data is very sensitive. Improved algorithms : k-medoids methods. Here a selection of objects called mediod to replace the center of the above, the logo on a medoid this category. Steps : 1, arbitrary selection of objects as K medoids (O1, O2, Ok ... ... Oi). Following is a cycle : 2, the remaining targets assigned to each category (in accordance with the closest medoid principle); 3, for each category (Oi), the order of selection of a Or, calculated Oi Or replace the consumption-E (Or))
    2005-07-26 01:32:58下载
    积分:1
  • pca-kpca
    此为pca ,kpca的源代码,智能技术课上用的(This is a pca, kpca source code)
    2010-05-29 11:00:26下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载