登录
首页 » matlab » srad

srad

于 2020-09-09 发布 文件大小:1KB
0 221
下载积分: 1 下载次数: 155

代码说明:

  SRAD filetr for speckle reduction .This filter is a variant of anisotropic diffusion which successfully removes speckle type noise from images.

文件列表:

srad.m

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • data_share_in_Matlab
    matlab procedures for variables
    2012-04-13 01:33:00下载
    积分:1
  • Q
    说明:  function form refrence matrixP
    2011-06-21 23:49:01下载
    积分:1
  • UltraEasyFBMC
    FBMC code for wireless communications
    2014-08-28 18:33:52下载
    积分:1
  • 11-26-1
    Describe: doa estimated classical music used to construct simple incident signals, using seven antenna reception of signals for DOA estimated.
    2009-11-20 16:34:55下载
    积分:1
  • LinearShootingMethod
    打靶法的再解微分方程中的应用。主要用来处理边值问题。(Re-shooting method of solving differential equations. Mainly used to deal with boundary value problems.)
    2010-05-23 10:52:21下载
    积分:1
  • erengydet
    高斯信道下能量检测算法,MPSK信号为例(Under Gaussian channel energy detection, MPSK signal, for example)
    2011-09-20 22:27:40下载
    积分:1
  • tp1gradateur1phas5
    ac ac power converter
    2010-11-18 06:37:54下载
    积分:1
  • GUI-based-Satellite-Tracking
    GUI based Satellite Tracking System
    2014-12-30 06:47:25下载
    积分:1
  • Jackknife代码及数据
    Jackknife距离的matlab实现,短小精悍,矩阵运算的小技巧。附有数据(Jackknife distance MATLAB, dapper, little skill matrix.Attached data)
    2017-10-06 11:28:28下载
    积分:1
  • VistaRestoreTools1.0
    denoise In BayesShrink[5] we determine the threshold for each subband assuming a Generalized Gaussian Distribution(GGD) . The GGD is given by GG¾ X ¯ (x) = C(¾ X ¯ )exp¡ [® (¾ X ¯ )jxj]¯ (6) ¡ 1 < x < 1 ¯ > 0, where ® (¾ X ¯ ) = ¾ ¡ 1 X [ ¡ (3=¯ ) ¡ (1=¯ ) ]1=2 and C(¾ X ¯ ) = ¯ ¢ ® (¾ X ¯ ) 2¡ ( 1 ¯ ) and ¡ (t) = R1 0 e¡ uut¡ 1du. The parameter ¾ X is the standard deviation and ¯ is the shape parameter It has been observed[5] that with a shape parameter ¯ ranging from 0.5 to 1, we can describe the the distribution of coefficients in a subband for a large set of natural images.Assuming such a distribution for the wavelet coefficients, we empirically estimate ¯ and ¾ X for each subband and try to find the threshold T which minimizes the Bayesian Risk, i.e, the expected value of the mean square error.
    2012-06-08 01:38:48下载
    积分:1
  • 696518资源总数
  • 105449会员总数
  • 3今日下载