-
p0303
采用灰度变换的方法增强图像的对比度 P0304:直方图均匀化,采用MATLAB编译(Gray-scale transformation using the method of contrast-enhanced images P0304: Histogram of homogenization, using MATLAB Compiler)
- 2007-08-13 11:23:59下载
- 积分:1
-
up
说明: 1.编写欧拉前差、后差、梯形公式。
2.编写二阶、三阶龙格库塔法通用程序。
3.编写汉明积分法通用程序.
4.编写用状态转移法对连续系统状态方程进行离散化的通用程序。(1. Euler prepared before the poor, after the poor, trapezoid formula. 2. The preparation of the second order, third-order Runge-Kutta method common procedures. 3. Hamming integration method to prepare common procedures .4. Prepared by the state of the transfer method of continuous system discretization equation of state for the general program.)
- 2008-05-13 23:09:25下载
- 积分:1
-
MatlabNeuralNetwork
Matlab Neural network about Neural network and application
- 2009-05-15 09:28:44下载
- 积分:1
-
graph1
基于matlab的数字信号发生器兼电子琴设计(Based on digital signal generator matlab Chief keyboard design)
- 2013-03-21 09:32:49下载
- 积分:1
-
Image-processing-
图像处理常见实例的在matlab环境下的具体实现,源码程序,对于初学者不可或缺。(Common examples of image processing in matlab environment, the specific implementation, the source program, for beginners is indispensable.)
- 2013-08-27 21:55:25下载
- 积分:1
-
Genetic.P
遗传算法的书籍,适合初学者快速上手学习用。(Genetic Algorithm books)
- 2013-12-27 15:51:49下载
- 积分:1
-
11
说明: 基于最小方差法低通FIR的设计说明书,单通带,有详细的步骤及相关理论知识(Minimum variance method low-pass FIR-based design specification, a single passband, with detailed steps and theoretical knowledge)
- 2012-04-08 15:33:40下载
- 积分:1
-
基于纹理的图像修复
基于纹理的图像修复,能够修复块状失真的图像(Based on texture image restoration, can repair massive distortion ima)
- 2010-12-11 21:08:53下载
- 积分:1
-
gcrf_demo
This MATLAB code is an example of how to train the GCRF model
described in "Learning Gaussian Conditional Random Fields for
Low-Level Vision" by M.F. Tappen, C. Liu, E.H. Adelson, and
W.T. Freeman in CVPR 2007. If you use this code in your research,
please cite this paper
- 2007-11-14 22:36:37下载
- 积分:1
-
PCA
PCA算法。PCA的目的是找到能够分离出最大方差的方向,所以首先求原来所有数据三个维度上的协方差,然后求这个协方差的特征值,最大特征值为第一个方向,从此以此类推。(PCA algorithm. The purpose of PCA is to find able to isolate the direction of maximum variance, so first find all the data in three dimensions on the original covariance, and then find the eigenvalues of the covariance, the biggest feature is the first in one direction, from and so on.)
- 2011-05-15 00:25:49下载
- 积分:1