登录
首页 » Others » Fonction-non-lineair-et-rna

Fonction-non-lineair-et-rna

于 2015-01-27 发布 文件大小:478KB
0 108
下载积分: 1 下载次数: 1

代码说明:

  fonction non lineaire

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • matlab
    本书基于MATLAB 5.2版,提供了使用MATLAB的实践性指导。MATLAB已成为适合多学科、多种工作平台的功能强大、界面友好、语言自然并且开放性强的大型优秀应用软件,同时也已成为国内外高等院校高等数学、数值分析、数字信号处理、自动控制理论以及工程应用等课程的基本教学工具。本书按逻辑编排,自始至终用实例描述;内容完整且每章相对独立;是一本简明的MATLAB参考书,既适用于初学者,也适用于高级MATLAB用户。对MATLAB与FORTRAN、C等语言结合的描述更是所有MATLAB书籍中少有的一大特色。 本书适合作为理工科高等院校研究生、本科生教学用书,也可作为广大科研工程技术人员的自学用书。(err)
    2008-06-10 21:21:41下载
    积分:1
  • shujunihe
    说明:  数据拟合分析源码,Matlab数理统计与分析上案例分析,希望对您有用(stepwise analy source)
    2011-03-27 15:34:28下载
    积分:1
  • matlab-feinieer
    菲涅尔公式的matlab仿真方法,并画出相应曲线。(The Fresnel formula Matlab simulation method, and draw the corresponding curve.)
    2020-11-29 17:39:28下载
    积分:1
  • RLS_henxiang
    说明:  基于RLs的自适应滤波器的设计 仿真通过(Adaptive filter based on RLs)
    2010-04-29 14:17:06下载
    积分:1
  • KLdisttemp
    This is code to calculate Kullback-Leibler (KL) distance between histograms. It can apply for 2D image
    2014-08-12 00:47:52下载
    积分:1
  • BM
    说明:  Opencv: Optical flow calculation using Block Matching method
    2010-05-09 21:55:59下载
    积分:1
  • DSP_zuixiaoercheng
    最小二乘窄带干扰消除。有用信号是一个点状目标,产生窄带干扰采样,产生高斯白噪声,设计一个M=100个系数的单步(D=1)线性预测器,再用得到的线性预测器来消除图中被干扰的信号x(n)中的噪声。(Least Squares narrowband interference cancellation. The useful signal is a target point, narrow-band interference is sampled Gaussian white noise, the design of a M = 100 coefficients in a single step (D = 1) linear predictor, then the obtained linear prediction filter to eliminate the interference graph the signal x (n) the noise.)
    2014-01-29 12:09:16下载
    积分:1
  • Matlab
    matlab数理统计数据箱 学习matlab很有用(matlab mathematics matlab statistical data useful for me to learn)
    2008-05-15 21:08:32下载
    积分:1
  • X-ray-matching
    Matlab code for image merging
    2014-10-08 22:03:39下载
    积分:1
  • 2dgaussian210
    2维曲面拟合,gauss or gabor 函数(Functions to fit a 2D Gaussian or 2D Gabor to a surface. The routines are automatic in the sense that they do not require the specification of starting guesses for the model parameters. This is done by evaluating the quality of fit (sum of squared error) for many different choices of parameters then refining the most promising set of params through least-squares (exhaustive search followed by refinement). Least-squares is statistically equivalent to maximum likelihood estimation of the model parameters on the assumption of independent, normally distributed Gaussian noise in the observations (pixels). autoGaussianSurf(xi,yi,zi) fits a Gaussian,)
    2012-08-15 12:59:33下载
    积分:1
  • 696518资源总数
  • 104622会员总数
  • 14今日下载