active-learning-code
代码说明:
Learning_random.m : 随机选择样例,从(90)pool里随机选择样本,删除版本空间树的数量 activeLearning.m:根据最大熵原则,从pool里选择样本,删除版本空间树的数量 getlabel.m:根据树和测试样例,得到根据该树得到的类标 getTrees.m:从提供的大量树结构(随机生成的)中,随机挑选一定数量的树(如果该树的叶子节点无类标随机添加) RandomCreateTree_d_unbalance:根据样本点割点中的非平衡割点建造树, RandomCreateTree_d_all.m:根据所有样本点的割点建造树 randomdata.m:给定属性取值,造数据 randomselect.m:从数据中随机选择一部分作为 showTree.m:显示树的结构 test.m:给出树,测试样例,得到正确率(Learning_random.m: randomly selected sample, randomly selected sample from (90) pool the The deleted version space tree quantity activeLearning.m: selecting a sample from the pool based on the principle of maximum entropy, delete the number of version space tree getlabel.m: According to the tree and the test sample obtained according to the class standard getTrees.m the tree: from the tree structure (randomly generated), randomly selected a certain number of trees (the leaves of the tree node class marked randomly adding ) RandomCreateTree_d_unbalance: According to the sample point cut point unbalanced cut point construction tree, RandomCreateTree_d_all.m: construction of the tree randomdata.m all sample points cut point: given the value of the property, manufacturing data randomselect.m: random data Select as part showTree.m: tree structure test.m: tree, the test sample is given to get the correct rate)
下载说明:请别用迅雷下载,失败请重下,重下不扣分!