-
Matlab_HW_3_1012806
這是我自己寫的 matlab 簡易入門的原始碼,我只是個初學者。(This is my own writing simple entry matlab source code, I' m just a beginner.)
- 2015-01-06 16:23:55下载
- 积分:1
-
DigitalScope
《生物医学数字信号处理》,生物医学中ECG信号的处理,强调实时处理算法。(“Biomedical Digital Signal Processing”,Biomedical ECG signal processing, emphasizing the real-time processing algorithms.)
- 2015-03-12 15:03:54下载
- 积分:1
-
createButtonLabel
buttonIcon = createButtonLabel(string,PVs,figOpt)
Have you ever been frustrated by an inability to label a vertically oriented pushbutton or uicontrol with a string? This function is for you!
All valid Parameter-Value pairs, INCLUDING TEXT ROTATION, are supported. Note that this function requires the Image Processing Toolbox, and that it triggers the creation of a temporary figure, which will be momentarily visible during button-label creation.
- 2009-10-21 15:19:29下载
- 积分:1
-
qqqq
遗传算法的程序讲解,里面有几个算法的例子,可以再matlab里直接运行,帮助初学者研究(On genetic algorithm procedure, there are several examples of algorithms, you can directly run the matlab help beginners study)
- 2009-05-24 14:13:58下载
- 积分:1
-
LDA_CODE_IIEC_CQU
一个关于LDA算法合格度分类的Matlab实例。(An LDA algorithm on Matlab examples.)
- 2011-04-28 16:17:18下载
- 积分:1
-
no-diversity
running simulation for no diversity system in fading rayleigh channel with jakes method
- 2011-07-25 01:31:50下载
- 积分:1
-
Rosenbrock
The Rosenbrock function is a non-convex function used as a performance test problem for optimization algorithms introduced by Rosenbrock (1960). It is also known as Rosenbrock s valley or Rosenbrock s banana function.
The global minimum is inside a long, narrow, parabolic shaped flat valley. To find the valley is trivial. To converge to the global minimum, however, is difficult.
- 2011-08-03 22:48:30下载
- 积分:1
-
low_pass_butterworth
an butterworth lowpass filter
- 2010-06-24 21:16:03下载
- 积分:1
-
optimization
牛津大学 优化方法课件 optimization(oxford optimization lecture notes)
- 2010-09-26 02:29:42下载
- 积分:1
-
Extractionofthemaincomponents
Matlab提取主分量矩阵。程序设计步骤:
1、去均值
2、计算协方差矩阵及其特征值和特征向量
3、计算协方差矩阵的特征值大于阈值的个数
4、降序排列特征值
5、去掉较小的特征值
6、去掉较大的特征值(一般没有这一步)
7、合并选择的特征值
8、选择相应的特征值和特征向量
9、计算白化矩阵
10、提取主分量()
- 2008-07-01 20:04:50下载
- 积分:1