登录
首页 » matlab » OSTBC_matlab

OSTBC_matlab

于 2020-06-29 发布 文件大小:355KB
0 127
下载积分: 1 下载次数: 87

代码说明:

  MIMO系统中OSTBC的源代码,源代码中有详细的说明,并且加了跨层的物理层安全方法(OSTBC source code in MIMO system , included a detailed description of the source code, and added a physical layer security cross layer approach )

文件列表:

OSTBC matlab程序源代码
......................\2发1收Alamouti

......................\..............\1.fig,11572,2014-10-17
......................\..............\design_QAM16_21.m,506,2014-10-17
......................\..............\design_QAM4_21.m,503,2014-10-17
......................\..............\design_QAM64_21.m,506,2014-10-17
......................\..............\detect16.m,472,2014-10-17
......................\..............\detect4.m,466,2014-10-17
......................\..............\detect64.m,472,2014-10-17
......................\..............\mseq.m,737,2013-11-14
......................\..............\picture.fig,12280,2014-01-08
......................\..............\QAM16.m,5987,2014-10-17
......................\..............\Qam16InverseMapping.m,2051,2013-12-24
......................\..............\QAM4.m,5937,2014-10-17
......................\..............\Qam4InverseMapping.m,620,2014-10-17
......................\..............\QAM64.m,5983,2014-10-17
......................\..............\Qam64InverseMapping.m,7719,2014-10-17
......................\..............\sim1.m,1066,2014-10-17
......................\..............\tx_modulate.m,3562,2014-10-17
......................\2发2收Alamouti

......................\..............\1.fig,10429,2014-10-17
......................\..............\design_QAM16_22.m,672,2014-10-17
......................\..............\design_QAM4_22.m,669,2014-10-17
......................\..............\design_QAM64_22.m,672,2014-10-17
......................\..............\detect16.m,472,2014-10-17
......................\..............\detect4.m,466,2014-10-17
......................\..............\detect64.m,472,2014-10-17
......................\..............\mseq.m,737,2013-11-14
......................\..............\picture.fig,12280,2014-01-08
......................\..............\QAM16.m,6743,2014-10-17
......................\..............\Qam16InverseMapping.m,2051,2013-12-24
......................\..............\QAM4.m,6727,2014-10-17
......................\..............\Qam4InverseMapping.m,620,2014-10-17
......................\..............\QAM64.m,6743,2014-10-17
......................\..............\Qam64InverseMapping.m,7719,2014-10-17
......................\..............\sim22.m,1069,2014-10-17
......................\..............\tx_modulate.m,3562,2014-10-17
......................\3发1收0.5

......................\.........\1.fig,10348,2014-10-17
......................\.........\design_QAM16_31.m,1366,2014-10-16
......................\.........\design_QAM4_31.m,1364,2014-10-16
......................\.........\design_QAM64_31.m,1366,2014-10-16
......................\.........\detect16.m,784,2014-10-16
......................\.........\detect4.m,774,2014-10-16
......................\.........\detect64.m,784,2014-10-16
......................\.........\mseq.m,737,2013-11-14
......................\.........\Qam16InverseMapping.m,2051,2013-12-24
......................\.........\QAM16_31.m,8904,2014-10-16
......................\.........\Qam4InverseMapping.m,612,2014-10-16
......................\.........\QAM4_31.m,8890,2014-10-16
......................\.........\Qam64InverseMapping.m,7719,2014-10-15
......................\.........\QAM64_31.m,8904,2014-10-16
......................\.........\sim31.m,941,2014-10-16
......................\.........\tx_modulate.m,3562,2014-10-15
......................\3发1收0.75

......................\..........\1.fig,10464,2014-10-17
......................\..........\design_QAM16_31.m,1515,2014-10-17
......................\..........\design_QAM4_31.m,1513,2014-10-17
......................\..........\design_QAM64_31.m,1515,2014-10-17
......................\..........\detect16.m,643,2014-10-17
......................\..........\detect4.m,635,2014-10-17
......................\..........\detect64.m,643,2014-10-17
......................\..........\mseq.m,737,2013-11-14
......................\..........\Qam16InverseMapping.m,2051,2014-05-26
......................\..........\QAM16_31.m,7448,2014-10-17
......................\..........\Qam4InverseMapping.m,620,2014-10-17
......................\..........\QAM4_31.m,7433,2014-10-17
......................\..........\Qam64InverseMapping.m,7719,2014-10-15
......................\..........\QAM64_31.m,7448,2014-10-17
......................\..........\sim31.m,933,2014-10-17
......................\..........\tx_modulate.m,3562,2014-10-17
......................\3发2收0.5

......................\.........\1.fig,10377,2014-10-17
......................\.........\design_QAM16_32.m,2337,2014-10-17
......................\.........\design_QAM4_32.m,2339,2014-10-17
......................\.........\design_QAM64_32.m,2342,2014-10-17
......................\.........\detect16.m,784,2014-10-16
......................\.........\detect4.m,774,2014-10-16
......................\.........\detect64.m,784,2014-10-16
......................\.........\mseq.m,737,2013-11-14
......................\.........\Qam16InverseMapping.m,2051,2013-12-24
......................\.........\QAM16_32.m,10948,2014-10-17
......................\.........\Qam4InverseMapping.m,612,2014-10-16
......................\.........\QAM4_32.m,10933,2014-10-17
......................\.........\Qam64InverseMapping.m,7719,2014-10-16
......................\.........\QAM64_32.m,10948,2014-10-17
......................\.........\sim32.m,954,2014-10-17
......................\.........\tx_modulate.m,3562,2014-10-17
......................\3发2收0.75

......................\..........\1.fig,10476,2014-10-17
......................\..........\design_QAM16_32.m,2609,2014-10-17
......................\..........\design_QAM4_32.m,2607,2014-10-17
......................\..........\design_QAM64_32.m,2609,2014-10-17
......................\..........\detect16.m,643,2014-10-17

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • eval
    一个ever的代码,是一个代码质量还不错,值得学习(An ever code is a code quality is also good, it is worth learning)
    2010-01-13 17:29:05下载
    积分:1
  • freehanddraw
    freehand drawing on figure
    2012-05-04 04:26:31下载
    积分:1
  • CDMA_Simulation
    This matlab file simulates CDMA system, Modulator and Demodulator modules are also available for download
    2010-11-23 07:22:03下载
    积分:1
  • i4_choose
    computes the binomial coefficient C(N,K).
    2012-03-30 08:31:15下载
    积分:1
  • WeiYiLiangCeLiang
    图像检测标定的方法测量海绵的位移量,附多幅实拍图像(Calibration image detection method for measuring the displacement amount of the sponge,attached pieces of real film images)
    2012-04-28 12:01:41下载
    积分:1
  • KSVD_Matlab_ToolBox
    64位系统下,ksvd降噪的matlab代码(64 bit system, ksvd noise reduction of matlab code)
    2016-05-17 16:06:48下载
    积分:1
  • MATLAB
    该文章主要是介绍滤波器的设计核心算法以及实例(This article mainly describes the design of filter core algorithm and example)
    2009-12-18 10:16:06下载
    积分:1
  • OpenCVmex
    cvlib_mex为已封装了openCV重要函数的库,PS:此文件供linux系统下64位matlab使用(cvlib_mex as an important function encapsulates the openCV library, PS: This file is for 64-bit linux system using matlab)
    2013-07-15 19:17:49下载
    积分:1
  • Fzcx2
    10kv配电网单相接地故障仿真模型,可实现直配线路及带分支线路的仿真,还可以直接观察到故障后电压电流信息的模分量(10kV single phase to earth fault of distribution network simulation model)
    2015-03-31 16:44:39下载
    积分:1
  • 1807.01622
    深度神经网络在函数近似中表现优越,然而需要从头开始训练。另一方面,贝叶斯方法,像高斯过程(GPs),可以利用利用先验知识在测试阶段进行快速推理。然而,高斯过程的计算量很大,也很难设计出合适的先验。本篇论文中我们提出了一种神经模型,条件神经过程(CNPs),可以结合这两者的优点。CNPs受灵活的随机过程的启发,比如GPs,但是结构是神经网络,并且通过梯度下降训练。CNPs通过很少的数据训练后就可以进行准确的预测,然后扩展到复杂函数和大数据集。我们证明了这个方法在一些典型的机器学习任务上面的的表现和功能,比如回归,分类和图像补全(Deep neural networks perform well in function approximation, but they need to be trained from scratch. On the other hand, Bayesian methods, such as Gauss Process (GPs), can make use of prior knowledge to conduct rapid reasoning in the testing stage. However, the calculation of Gauss process is very heavy, and it is difficult to design a suitable priori. In this paper, we propose a neural model, conditional neural processes (CNPs), which can combine the advantages of both. CNPs are inspired by flexible stochastic processes, such as GPs, but are structured as neural networks and trained by gradient descent. CNPs can predict accurately with very little data training, and then extend to complex functions and large data sets. We demonstrate the performance and functions of this method on some typical machine learning tasks, such as regression, classification and image completion.)
    2020-06-23 22:20:02下载
    积分:1
  • 696518资源总数
  • 104384会员总数
  • 26今日下载