登录
首页 » C++ » LUT123

LUT123

于 2013-09-27 发布 文件大小:1KB
0 106
下载积分: 1 下载次数: 30

代码说明:

  该程序基于MATLAB 功放 记忆多项式 预失真 查找表(The program is based on MATLAB amplifier memory polynomial predistortion lookup table)

文件列表:

记忆多项式 功放查找表.txt,4726,2013-09-22

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Matrix-Algebra-Theory
    矩阵分析的书其一些基本理论,是学习矩阵分析常用的书籍(Matrix Alfebra,theory,Computations,and applications in statistics,James E Gentle)
    2011-06-01 15:12:54下载
    积分:1
  • BCI-frequency-search
    matlab code for frequency search method
    2012-07-25 05:07:17下载
    积分:1
  • Ex10-Matlab-code
    Matlab源码,模拟量子密钥分配,simulate Quantum Key Distribution (QKD) (Using Matlab to simulate Quantum Key Distribution (QKD) )
    2021-04-09 12:39:00下载
    积分:1
  • bchgenpoly
    产生BCH码多项式,其中码字长度为N,消息长度为K(BCH code generated polynomial, which codeword length N, message length K)
    2007-07-16 17:31:18下载
    积分:1
  • PID_10
    普通PID控制及其扩展算法控制的MATALB仿真程序,内容包含面广.(ordinary PID control algorithm and its expansion of enriching control simulation program, which includes many sectors.)
    2007-03-11 13:57:22下载
    积分:1
  • lms
    lms算法实现单波束形成,线阵单波束形成,(linear array signal beamforming )(LMS beamforming algorithm alone, single-line array beamforming, (linear array signal beamforming))
    2007-07-11 22:01:14下载
    积分:1
  • DOPBoxV1_5
    Discrete Orthogonal Polynomial Toolbox: DOPBox Version 1.5
    2013-07-30 13:30:40下载
    积分:1
  • PV_Array_Author_rupesh
    simulation in matlab simulink of a pv array for solar energy conversion
    2011-10-18 23:21:06下载
    积分:1
  • tulusuanfa
    图论算法,里边的内容包括最短路径,最小生成树,最大流,遍历的算法及详细讲解。(Graph algorithms, including inside the shortest path, minimum spanning tree, maximum flow, traversal algorithms and detailed explanation.)
    2013-08-27 22:07:51下载
    积分:1
  • WindyGridWorldQLearning
    Q-learning (Watkins, 1989) is a simple way for agents to learn how to act optimally in controlled Markovian domains. It amounts to an incremental method for dynamic programming which imposes limited computational demands. It works by successively improving its evaluations of the quality of particular actions at particular states. This paper presents and proves in detail a convergence theorem for Q,-learning based on that outlined in Watkins (1989). We show that Q-learning converges to the optimum action-values with probability 1 so long as all actions are repeatedly sampled in all states and the action-values are represented discretely. We also sketch extensions to the cases of non-discounted, but absorbing, Markov environments, and where many Q values can be changed each iteration, rather than just one.
    2013-04-19 14:23:35下载
    积分:1
  • 696518资源总数
  • 104384会员总数
  • 26今日下载