-
EedffazipD
EDFA的掺铒光纤长度模拟计算,附3篇相关论文,330mw的980nm泵泵浦,3db的泵浦吸收,12m最佳长度已经的到验证,可作为EDFA设计参考
(EDFA erbium-doped fiber length simulation of three related papers, 330mw of 980nm pump pump pump 3db absorption 12m optimum length has been to verify, can be used as the EDFA design reference)
- 2012-08-05 18:09:17下载
- 积分:1
-
jifen
分别用梯形法和矩形法求定积分,附加应用实例(, Respectively, with the trapezoidal method and the rectangle method to find definite integrals, additional application examples)
- 2012-11-28 22:16:59下载
- 积分:1
-
Wilson_angle
wilson_theta法计算地震波matlab程序(wilson_theta calculation matlab program of seismic waves)
- 2012-11-01 00:21:15下载
- 积分:1
-
hanso0_9
H无穷大优化算法代码,用于计算固定阶数的控制器参数优化(HIFOO- A MATLAB package for
fixed-order controller design
and H-infinity optimization)
- 2014-01-13 11:50:31下载
- 积分:1
-
Parallel-inverse-solution
并联机构 正反解 六自由度并联机构空间运动结算 实例分析(DOF parallel mechanism inverse solution space motion parallel mechanism settled case analysis)
- 2021-03-20 11:59:18下载
- 积分:1
-
最优化作业C++源代码
用C++编的一些最优化作业中的程序,有Newton法,DFP法,共轭梯度法,单纯形法,内点法,外点法,内外点法,都能使用,我已经全部调试过了(C compile some of the most optimized operating procedures, Newton, DFP, conjugate gradient method, the simplex method, interior point method, the points outside the law, outside point method can use, I have all over Debugging)
- 2021-03-29 10:49:11下载
- 积分:1
-
层次分析法求权重
可用于层次分析法比较评价,主函数输入初始矩阵,调用层次分析函数(It can be used for comparative evaluation of analytic hierarchy process. The main function input the initial matrix and call the analytic hierarchy process function.)
- 2020-06-19 11:40:02下载
- 积分:1
-
四面体单元
针对三维问题,建立四面体单元的有限元方法(Finite element method for establishing tetrahedron element)
- 2017-08-09 20:29:13下载
- 积分:1
-
SOMP
同时正交匹配追踪算法的MATLAB程序,一些文献中也被翻译成同步正交匹配追踪。(Simultaneous Orthogonal Matching Pursuit(SOMP))
- 2020-12-02 20:59:25下载
- 积分:1
-
hartigansSLC_OpenCV
hartigans Sequential Leader Clustering Algorithm in terms of OpenCV (ver.1.1)
Sequential Leader algorithm:
Hartigan, J. A. (1975), Clustering Algorithms. John Wiley and Sons, Inc., New York, NY.
1. Select maximum cluster "radius"
2. Start with zero clusters
3. Add each item to be clustered to:
* Closest cluster if distance <= r
* New cluster if distance to closest cluster > r
4. Compute new center from members in cluster
5. Empty the clusters (keeping the centers)
6. Return to step 3 (until no changes are made)
- 2010-02-25 19:28:25下载
- 积分:1