登录
首页 » matlab » hausdorf

hausdorf

于 2013-03-27 发布 文件大小:11KB
0 96
下载积分: 1 下载次数: 6

代码说明:

  matlab program for calculating fractal dimension using hausdorf algorithm

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • args
    ARGS demonstrates how a MATLAB procedure can examine its arguments.
    2012-09-01 16:35:11下载
    积分:1
  • New-folder
    involes leach clustering method. the energy efficient way to custer the nodes in a wireless networks and the modulation schemes involved in these wireless sensor communication
    2012-08-05 17:04:07下载
    积分:1
  • region_grow1
    区域增长法的Matlab实现,区域增长法的Matlab实现(Matlab to achieve regional growth law)
    2011-04-28 15:42:56下载
    积分:1
  • Image-analysis
    图像分析一般利用数学模型并结合图像处理的技术来分析底层特征和上层结构,从而提取具有一定智能性的信息。(Image analysis)
    2012-04-03 15:56:37下载
    积分:1
  • featuredetection
    老师布置的作业几何图形的特征识别分类中心提取以及圆形的圆心半径参数的确定(Teacher assignments geometry feature recognition extraction and classification center center circle radius to determine the parameters)
    2015-01-05 12:41:55下载
    积分:1
  • Ma_tran_va_Mang_trong_Matlab
    matlab tiế ng Việ t tự họ c
    2009-06-05 16:51:29下载
    积分:1
  • GA1
    优化遗传算法系列中的第一种优化遗传算法,只需要该参数即可。(Genetic Algorithm Optimization of the first in a series of genetic algorithm to optimize only the parameters need to be.)
    2009-06-13 13:31:08下载
    积分:1
  • io
    说明:  ort = IO(x,imf) computes the index of orthogonality
    2021-03-02 15:29:35下载
    积分:1
  • senoise
    说明:  生成有色噪声,并显示噪声功率谱。这该死的20个字(Generating colored noise)
    2019-10-18 10:37:08下载
    积分:1
  • gpml-matlab-v1.3-2006-09-08
    说明:  高斯过程(GP)模型中推理和预测的实现。它实现了在《Rasmussen & Williams:机器学习的高斯过程》(麻省理工学院出版社,2006)和《Nickisch & Rasmussen:二进制高斯过程分类的近似》(JMLR, 2008)中讨论的算法。该函数的优点在于灵活性、简单性和可扩展性。该函数具有一定的灵活性,首先通过定义均值函数和协方差函数来确定遗传算法的性质。其次,它允许指定不同的推理过程,如精确推理和期望传播(EP)。第三,它允许指定似然函数,如高斯函数或拉普拉斯函数(用于回归)和累积逻辑函数(用于分类)。简单性是通过一个简单的函数和紧凑的代码实现的。可扩展性是通过模块化设计来保证的,允许为已经相当广泛的推理方法、均值函数、协方差函数和似然函数库轻松添加扩展。(Gaussian Processes for Machine Learning , the MIT press, 2006 and Nickisch & Rasmussen: Approximations for Binary Gaussian Process Classification , JMLR, 2008. The strength of the function lies in its flexibility, simplicity and extensibility. The function is flexible as firstly it allows specification of the properties of the GP through definition of mean function and covariance functions. Secondly, it allows specification of different inference procedures, such as e.g. exact inference and Expectation Propagation (EP). Thirdly it allows specification of likelihood functions e.g. Gaussian or Laplace (for regression) and e.g. cumulative Logistic (for classification). Simplicity is achieved through a single function and compact code.)
    2020-02-26 20:39:48下载
    积分:1
  • 696518资源总数
  • 104226会员总数
  • 33今日下载