登录
首页 » matlab » shengxianchangdu

shengxianchangdu

于 2021-04-23 发布 文件大小:1KB
0 145
下载积分: 1 下载次数: 51

代码说明:

  程序计算在声速梯度下水中声线的传播并计算声线的长度(Program calculates the velocity gradient in the water line of acoustic sound propagation and calculate the length of the line)

文件列表:

shengxianchangdu.m,2407,2012-07-05

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • Counting-machine
    for counting a bunch of solar cell
    2011-06-13 03:44:18下载
    积分:1
  • NSGA2-MOPSO
    NSGA2 and MOPSO algorithms
    2018-04-20 19:51:36下载
    积分:1
  • Time-series-analysis-CC-algorithm
    时间序列的相空间重构延迟时间和嵌入维数的CC算法(Time series analysis CC algorithm for delay time and embedding dimension)
    2012-06-18 14:50:06下载
    积分:1
  • MMA
    说明:  拓扑优化MMA算法从空间的一个初始设计点出发,沿着某个搜索方向以适当步长的迭代格式 ,实现对设计变量的修改,以获得的值。(Starting from an initial design point in space, the topology optimization MMA algorithm modifies the design variables in an appropriate iterative format along a certain search direction to obtain the optimal value)
    2021-02-04 12:14:39下载
    积分:1
  • 1
    说明:  Fractal分形,简短的代码,清晰可用(Fractal)
    2010-09-22 18:49:09下载
    积分:1
  • Bilinear-interpolation
    双线性插值FORTRAN计算程序,用于FORTRAN90(Bilinear interpolation)
    2021-03-18 09:59:20下载
    积分:1
  • planetruss
    有限元分析与应用中的程序,用于平面束分析(Finite element analysis and application of the program, for planar beam analysis)
    2015-06-30 09:30:55下载
    积分:1
  • Average stress
    计算多材料单元平均应力应变,用于提取计算等效弹性模量 泊松系数(Calculate the average stress-strain of multi-material elements)
    2020-11-11 18:59:45下载
    积分:1
  • lsmd
    最小二乘递推算法及其matlab实现(计算估计值)(least squares method)
    2021-03-03 11:09:33下载
    积分:1
  • SVD
    % 奇异值分解 (sigular value decomposition,SVD) 是另一种正交矩阵分解法;SVD是最可靠的分解法, % 但是它比QR 分解法要花上近十倍的计算时间。[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵, % 而S代表一对角矩阵。 和QR分解法相同者, 原矩阵A不必为正方矩阵。 % 使用SVD分解法的用途是解最小平方误差法和数据压缩。用svd分解法解线性方程组,在Quke2中就用这个来计算图形信息,性能相当的好。在计算线性方程组时,一些不能分解的矩阵或者严重病态矩阵的线性方程都能很好的得到解( Singular value decomposition (sigular value decomposition, SVD) is another orthogonal matrix decomposition method SVD decomposition is the most reliable method, but it takes more than QR decomposition near ten times the computing time. [U, S, V] = svd (A), in which U and V on behalf of two mutually orthogonal matrix, and the S on behalf of a diagonal matrix. And QR decomposition are the same, the original matrix A is no need for the square matrix. The use of SVD decomposition method are used as a solution of least squares error method and data compression. Using SVD decomposition solution of linear equations, in Quke2 on to use this information to calculate the graphics performance quite good. In the calculation of linear equations, some indecomposable matrix or serious pathological matrix of linear equations can be a very good solution)
    2020-12-21 10:29:08下载
    积分:1
  • 696518资源总数
  • 104734会员总数
  • 23今日下载