登录
首页 » matlab » dingweichengxu

dingweichengxu

于 2014-10-27 发布 文件大小:1KB
0 149
下载积分: 1 下载次数: 116

代码说明:

  故障定位程序 主要应用于交流故障测距 在MATLAB环境下进行编译 (Fault Locator)

文件列表:

dingweichengxu.m,2635,2014-08-01

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • tdofpz3x3_rlocus
    地震反应 地震作用 刚度矩阵 非线性地震反应 聚合 弹塑性(Seismic response of earthquake stiffness matrix of the nonlinear seismic response of aggregate elastic-plastic)
    2012-03-24 17:46:03下载
    积分:1
  • matrix
    返回拉普拉斯抠图矩阵,实现用matlab抠图功能(Back matting Laplacian matrix, implemented by the matting function matlab)
    2011-05-23 10:33:29下载
    积分:1
  • matlab
    自己编的,基于自适应噪声对消的语音增强新算法(Own, based on adaptive noise cancellation of the new algorithm for speech enhancement)
    2009-03-17 15:41:14下载
    积分:1
  • shuzhifenximatlab
    这是关于基本的数值分析程序!采用压缩包上载,是一些子程序组成的。(on basic numerical analysis program! Using compression on the packet is composed of some routines.)
    2006-05-31 08:56:38下载
    积分:1
  • work312
    求解微分方程组,并分析方程组性态对解的影响。(Solving differential equations, equations of state and analyze the impact of the solution.)
    2012-01-10 22:40:24下载
    积分:1
  • Blind Equalizer 的演算法主要是利用CMA及 LMS 的配合
    Blind Equalizer 的演算法主要是利用CMA及 LMS 的配合,当CMA将EYE打开,使讯号趋近于正确值,就切换到LMS,利用Slicer的输出当作training sequence来调整Equalizer的系数,而Carrier Recovery 的部份,则是将phase error track出来(Blind Equalizer algorithm is the use of the CMA and LMS tie, When the CMA will EYE open, signaling close to the correct value, it switched to the LMS. SLICER use of the output as training sequence to adjust Equalize The coefficient r, and some of Carrier Recovery, the type of track out phase error)
    2020-12-17 17:59:13下载
    积分:1
  • sason1
    the sum-rate inner bound of sason on two-user interference channel
    2011-09-22 10:02:34下载
    积分:1
  • newton--matlab
    4次牛顿差值多项式的matlab实现 数值分析实习作业(4 Newton polynomial difference)
    2013-11-17 17:19:57下载
    积分:1
  • xiaowei
    matlab 合成和制作音乐小薇........(matlab synthesis and production of music Wei ........)
    2014-04-27 09:15:16下载
    积分:1
  • kalmanintroduction
    In his 1960 famous publication (“A new approach to linear filtering and prediction problems”, Trans.ASME J. Basic Engineering., vol 82, March 1960, pp 34-45), Rudolf Kalman based the construction of the state estimation filter on probability theory, and more specifically, on the properties of conditional Gaussian random variables. The criterion he proposed to minimize is the state vector covariance norm, yielding to the classical recursion : the new state estimate is deduced from the previous estimation by addition of a correction term proportional to the prediction error (or the innovation of the measured signal).
    2010-07-08 02:26:01下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载