登录
首页 » matlab » lyanpuvov

lyanpuvov

于 2014-10-21 发布 文件大小:3KB
0 85
下载积分: 1 下载次数: 22

代码说明:

  用于计算李雅普诺夫指数的混沌方程并且实现(Used to calculate the Lyapunov exponents of chaotic equation and achieve)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • part1
    bpsk调制信号通过rayleigh信道的误码率测量(ber of bpsk over rayleigh channel)
    2010-06-05 08:49:18下载
    积分:1
  • jisuanfangfa
    数值分析方法,主要里面涵盖了计算方法方面matlab程序!(Numerical analysis methods, which cover the main aspects of the calculation method matlab program!)
    2009-03-20 19:48:16下载
    积分:1
  • ssbcode
    ssb调制信号,适合matlab仿真使用,功能不错,希望能帮到大家(ssb modulation signal, suitable for simulation using matlab, functions well, hope to help you)
    2011-05-24 13:49:42下载
    积分:1
  • CreatePattern
    用matlab,根据要求输出特定的pattern,作为相机标定用(Using matlab, according to the specific requirements of the output pattern, as the camera calibration with)
    2013-09-21 09:04:43下载
    积分:1
  • 2mimo
    在MIMO系统中的二乘二系统的模型代码,以及性能分析。(In the MIMO system model二乘II system code, as well as performance analysis.)
    2008-03-17 10:57:04下载
    积分:1
  • chaohundunxitonghuamotongbukongzhi
    超混沌系统的滑模同步控制程序 四维超混沌系统 滑模面 同步控制 指数趋近律(Synchronization control hyperchaos system sliding mode)
    2016-01-12 10:20:57下载
    积分:1
  • tuxiangchuli
    有关matlab的图像处理课件,供初学者学习参考。(Matlab image processing related courseware for beginners to learn information.)
    2011-01-13 20:28:13下载
    积分:1
  • wiener
    在MATLAB环境下,采用维纳滤波对语音进行去噪(In the MATLAB environment using Wiener filtering of speech denoising)
    2012-03-29 22:04:35下载
    积分:1
  • WTWPTour
    WTWPTour function in wavelet processing
    2013-05-08 01:21:00下载
    积分:1
  • fs_sup_relieff
    Relief算法中特征和类别的相关性是基于特征对近距离样本的区分能力。算法从训练集D中选择一个样本R,然后从和R同类的样本中寻找最近邻样本H,称为Near Hit,从和R不同类的样本中寻找最近样本M,称为Near Miss,根据以下规则更新每个特征的权重: 如果R和Near Hit在某个特征上的距离小于R和Near Miss上的距离,则说明该特征对区分同类和不同类的最近邻是有益的,则增加该特征的权重;反之,如果R和Near Hit在某个特征上的距离大于R和Near Miss上的距离,则说明该特征对区分同类和不同类的最近邻起负面作用,则降低该特征的权重。(The correlation between feature and category in Relief algorithm is based on distinguishing ability of feature to close sample. The algorithm selects a sample R from the training set D, and then searches for the nearest neighbor sample H from the samples of the same R, called Near Hit, and searches for the nearest sample M from the sample of the R dissimilar, called the Near Miss, and updates the weight of each feature according to the following rules: If the distance between R and Near Hit on a certain feature is less than the distance between R and Near Miss, it shows that the feature is beneficial to the nearest neighbor of the same kind and dissimilar, and increases the weight of the feature; conversely, if the distance between R and Near Hit is greater than the distance on R and Near Miss, the feature is the same. The negative effect of nearest neighbor between class and different kind reduces the weight of the feature.)
    2018-04-17 14:41:55下载
    积分:1
  • 696518资源总数
  • 104384会员总数
  • 26今日下载