登录
首页 » matlab » Dipole-source-grid-method

Dipole-source-grid-method

于 2021-01-13 发布 文件大小:7120KB
0 120
下载积分: 1 下载次数: 66

代码说明:

  改进了跨声速偶极子网格法(TDLM),且在颤振计算中能自动求颤振点速度,从而较大地提高了计算速度,并有利于方法在较大马赫数及较大减缩频率时的应用。(Dipole source grid method)

文件列表:

偶极子网格法
............\main01
............\......\AeroLocalCoordToGlobalCoord.asv,3007,2012-03-02
............\......\AeroLocalCoordToGlobalCoord.m,2132,2012-03-02
............\......\AIC0.m,1453,2012-03-02
............\......\AIC12.m,2737,2012-03-02
............\......\column.m,176,2012-03-02
............\......\Compute3Eig.m,551,2012-03-02
............\......\ComputeAa.m,622,2012-03-02
............\......\ComputeAb.m,1001,2012-03-02
............\......\ComputeABC.m,1266,2012-03-02
............\......\ComputeAeroDisAndSlope.m,758,2012-03-02
............\......\ComputeAeroMeshInfo.m,4218,2012-03-02
............\......\ComputeD1ij.asv,255,2012-03-02
............\......\ComputeD1ij.m,265,2012-03-02
............\......\ComputeD2ij.m,914,2012-03-02
............\......\computeDKija.m,341,2012-03-02
............\......\ComputeEEEig.asv,544,2012-03-02
............\......\ComputeEEEig.m,544,2012-03-02
............\......\ComputeEEig.asv,395,2012-03-02
............\......\ComputeEEig.m,418,2012-03-02
............\......\ComputeEig.m,526,2012-03-02
............\......\ComputeEpsilon.m,528,2012-03-02
............\......\ComputeGasGalphasMat.m,461,2012-03-02
............\......\ComputeI1.m,224,2012-03-02
............\......\ComputeI2.m,455,2012-03-02
............\......\ComputeJ13.asv,598,2012-03-02
............\......\ComputeJ13.m,593,2012-03-02
............\......\computeKij.m,223,2012-03-02
............\......\computeKija.m,251,2012-03-02
............\......\ComputeNatrualFreqShapeOfSubS.m,298,2012-03-02
............\......\ComputeP12.m,1688,2012-03-02
............\......\ComputeQ.m,3215,2012-03-02
............\......\Damp0point02.dat,900,2012-03-02
............\......\Damp0point04.dat,850,2012-03-02
............\......\DetermineDihedralAngle.m,265,2012-03-02
............\......\EigVectorAASorted0.mat,172278,2012-03-02
............\......\ElementNodesA0.mat,304,2012-03-02
............\......\ElementNodesB0.mat,480,2012-03-02
............\......\ElementNodesC0.mat,863,2012-03-02
............\......\findmodflag.m,238,2012-03-02
............\......\FindnodeCord.asv,200,2012-03-02
............\......\FindnodeCord.m,216,2012-03-02
............\......\FlutterAngle100.dat,165300,2012-03-02
............\......\FlutterAngle120.dat,120300,2012-04-10
............\......\FlutterAngle40.dat,135300,2012-03-02
............\......\FlutterAngle90.dat,165300,2012-03-02
............\......\flutters.asv,1150,2012-03-02
............\......\flutters.m,1167,2012-03-02
............\......\FlutterShape100.dat,1340697,2012-03-02
............\......\FlutterShape120.dat,1340697,2012-03-02
............\......\FlutterShape40.dat,1340697,2012-03-02
............\......\FlutterShape60.dat,1340697,2012-03-02
............\......\FlutterShape90.dat,1340697,2012-03-02
............\......\FoldAngle100ModalShape1.dat,40665,2012-03-02
............\......\FoldAngle100ModalShape2.dat,40665,2012-03-02
............\......\FoldAngle100ModalShape3.dat,40665,2012-03-02
............\......\FoldAngle100ModalShape4.dat,40666,2012-03-02
............\......\FoldAngle100ModalShape5.dat,40665,2012-03-02
............\......\FoldAngle100ModalShape6.dat,40665,2012-03-02
............\......\FoldAngle120ModalShape1.dat,40665,2012-03-02
............\......\FoldAngle120ModalShape2.dat,40665,2012-03-02
............\......\FoldAngle120ModalShape3.dat,40665,2012-03-02
............\......\FoldAngle120ModalShape4.dat,40669,2012-03-02
............\......\FoldAngle120ModalShape5.dat,40665,2012-03-02
............\......\FoldAngle120ModalShape6.dat,40665,2012-03-02
............\......\FoldAngle40ModalShape1.dat,40665,2012-03-02
............\......\FoldAngle40ModalShape2.dat,40665,2012-03-02
............\......\FoldAngle40ModalShape3.dat,40665,2012-03-02
............\......\FoldAngle40ModalShape4.dat,40674,2012-03-02
............\......\FoldAngle40ModalShape5.dat,40665,2012-03-02
............\......\FoldAngle40ModalShape6.dat,40665,2012-03-02
............\......\FoldAngle90ModalShape1.dat,40665,2012-03-02
............\......\FoldAngle90ModalShape2.dat,40665,2012-03-02
............\......\FoldAngle90ModalShape3.dat,40665,2012-03-02
............\......\FoldAngle90ModalShape4.dat,40666,2012-03-02
............\......\FoldAngle90ModalShape5.dat,40665,2012-03-02
............\......\FoldAngle90ModalShape6.dat,40665,2012-03-02
............\......\FoldAngleFlutSpeedFreq4000Myown.dat,1100,2012-03-02
............\......\FoldAngleFlutSpeedFreq4000Nastran.dat,500,2012-03-02
............\......\FoldFreqKA4000KB4000.dat,1482,2012-03-02
............\......\formAaeMatrix.m,460,2012-03-02
............\......\formDDA.m,359,2012-03-02
............\......\formDDK.m,396,2012-03-02
............\......\FormFlutterModeShapetotecplot.asv,7475,2012-03-02
............\......\FormFlutterModeShapetotecplot.m,7544,2012-03-02
............\......\FormGunABCMatrix.m,983,2012-03-02
............\......\FormInfoForSubStruct.m,834,2012-03-02
............\......\FormMassStiffConstrained.m,586,2012-03-02
............\......\FormNodeGlobalCoord.asv,1871,2012-03-02
............\......\FormNodeGlobalCoord.m,1038,2012-03-02
............\......\FormNodeGlobalCoordA.m,432,2012-03-02
............\......\FormNodeGlobalCoordB.m,643,2012-03-02
............\......\FormNodeGlobalCoordC.m,667,2012-03-02
............\......\FormSubMatrixA.m,928,2012-03-02
............\......\FormSubMatrixB.m,2257,2012-03-02
............\......\FormSubMatrixC.m,931,2012-03-02
............\......\FromMassStiffMatGlobal.m,5625,2012-03-02
............\......\FromStrucNodesXYABCMatrix.m,963,2012-03-02
............\......\FromTranformMatrix.m,1419,2012-03-02

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • primesieve
    pipelined algorithm implementation in a cluster of personal computers with ANSI C of Eratoshenis sieve problem (prime mumbers)
    2009-06-17 17:37:47下载
    积分:1
  • gauss-seidel
    二维热传导扩散方程的高斯-赛德尔迭代方法。(A two-dimensional thermal diffusion problem using Gauss-Seidel iteration method.)
    2021-01-18 14:28:44下载
    积分:1
  • foundations-of-linear-operator-theory-2005
    介绍线性算子的基本概念的文章,这是书里面的一个章节(Foundation of linear operator theory)
    2020-06-21 00:40:02下载
    积分:1
  • pic1d
    这是一个用于一维等离子体粒子模拟的Fortran程序。(This is a one-dimensional plasma particle simulation for Fortran programs.)
    2021-04-13 10:18:56下载
    积分:1
  • 非线性方程组求解
    常用的matlab代码,非线性方程组求解,基本可以满足大学和研究生常用代码(Common Mathematical Codes)
    2019-04-22 23:23:03下载
    积分:1
  • FFT
    FFT with fix point 2*N
    2013-10-06 15:38:38下载
    积分:1
  • BladedDLLInterface
    This source file contains example PitchCntrl(), UserHSSBr(), ! UserVSCont(), and UserYawCont() routines that are used to interface ! FAST with a master controller implemented as a dynamic-link-library ! (DLL) in the style of Garrad Hassan s Bladed wind turbine software ! package. All four routines call routine BladedDLLInterface(), which ! contains a call to the Bladed-style DLL that evaluates as DISCON(). ! Routine BladedDLLInterface() USEs a MODULE named ! BladedDLLParameters(), which stores values of PARAMETER constants ! used in the interface.
    2013-09-05 03:49:38下载
    积分:1
  • multable
    java编写九九乘法表 1*1=1 2*1=2 2*2=4 3*1=3 3*2=6 3*3=9 4*1=4 4*2=8 4*3=12 4*4=16 5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 9*1=9 9*2=18 9*3=27 9*4=36 9*5=45 9*6=54 9*7=63 9*8=72 9*9=81 (Multiplication table 1*1=1 2*1=2 2*2=4 3*1=3 3*2=6 3*3=9 4*1=4 4*2=8 4*3=12 4*4=16 5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 9*1=9 9*2=18 9*3=27 9*4=36 9*5=45 9*6=54 9*7=63 9*8=72 9*9=81 )
    2012-11-29 08:29:51下载
    积分:1
  • na7
    Orthogonal Polynomials Approximation 数值分析,计算正交基多项式的系数 (Given a function f and a set of m >0 distinct points . You are supposed to write a function to approximate f by an orthogonal polynomial using the exact function values at the given m points with a weight assigned to each point . The total error must be no larger than a given tolerance. Format of function int OPA( double (*f)(double t), int m, double x[], double w[], double c[], double*eps ) where the function pointer double (*f)(double t) defines the function f int m is the number of points double x[] contains points double w[] contains the values of a weight function at the given points x[] double c[] contains the coefficients of the approximation polynomial double*eps is passed into the function as the tolerance for the error, and is supposed to be returned as the value of error. The function OPA is supposed to return the degree of the approximation polynomial. Note: a constant Max_n is defined so that if the total error is still not small enough when n = Ma)
    2011-11-27 11:47:21下载
    积分:1
  • test
    随机数的产生,枚举嵌套算法求解一元多次方程。按批量处理。(The generation of random Numbers, nested enumeration algorithm monadic equation according to the batch processing for many times)
    2013-05-18 08:42:15下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载