-
mixGMMmatlab
混合高斯建模方法是目标检测中的一种重要方法( mix gauss detection object )
- 2010-05-20 18:55:23下载
- 积分:1
-
baidongshai
摆动筛,物体左移、右移、跳跃条件,k线,曲线图(Were screening
)
- 2011-07-07 09:26:55下载
- 积分:1
-
Example36.m
非常有用的matlab图像处理资源,适合于广大初学者(very useful Matlab image processing resources suitable for the vast majority of beginners)
- 2007-06-12 10:51:57下载
- 积分:1
-
变分模态分解
关于VMD的一篇博士论文,其中比较了EMD和LMD以及VMD的分解效果,证明VMD分解有较好的效果。(A doctoral thesis on VMD, which compares the decomposition effects of EMD, LMD and VMD, proves that VMD decomposition has a good effect.)
- 2021-03-25 10:49:14下载
- 积分:1
-
Delphi-and-Matlab
Delphi与Matlab混合编程,在Delphi中调用Matlab文件(Delphi and Matlab. Matlab files being called in Delphi)
- 2013-10-19 19:33:52下载
- 积分:1
-
dtw
Dynamic Time Wrapping
- 2013-04-30 00:31:59下载
- 积分:1
-
SOMP
SOMP图像处理的matlab程序,可供参考学习。(The SOMP image processing matlab program)
- 2013-05-11 23:23:45下载
- 积分:1
-
Linear-System-Root-locus
In control theory and stability theory, root locus analysis is a graphical method for examining how the roots of a system change with variation of a certain system parameter, commonly a gain within a feedback system. This is a technique used as a stability criterion in the field of classical control theory developed by Walter R. Evans which can determine stability of the system. The root locus plots the poles of the closed loop transfer function in the complex s-plane as a function of a gain parameter.
- 2016-05-04 23:23:55下载
- 积分:1
-
ANNPID
分别采用4种控制律进行单神经元PID控制,即无监督的Hebb学习规则、有监督的Delta学习规则、有监督的Hebb学习规则、改进的Hebb学习规则.(Separately using four kinds of control laws for single neuron PID control, that is, unsupervised Hebb learning rules, there is the Delta Study supervision rules, there is supervised Hebb learning rule to improve the Hebb learning rule.)
- 2009-03-24 18:23:38下载
- 积分:1
-
EnumDevieDlg
实现枚举设备的功能,像window设备管理器一样的功能。简单使用,解决了很多程序员的苦恼问题(The achievement of enumerated devices, such as Device Manager window functions the same. Simple to use, a lot of programmers to solve the problem of distress)
- 2009-05-19 17:59:21下载
- 积分:1