final-code
代码说明:
This paper presents a new approach to image segmentation using Pillar K-means algorithm. This segmentation method includes a new mechanism for grouping the elements of high resolution images in order to improve accuracy and reduce the computation time. The system uses K-means for image segmentation optimized by the algorithm after Pillar. The Pillar algorithm considers the placement of pillars should be located as far from each other to resist the pressure distribution of a roof, as same as the number of centroids between the data distribution. This algorithm is able to optimize the K-means clustering for image segmentation in the aspects of accuracy and computation time. This algorithm distributes all initial centroids according to the maximum cumulative distance metric. This paper evaluates the proposed approach for image segmentation by comparing with K-means clustering algorithm and Gaussian mixture model and the participation of RGB, HSV, HSL and CIELAB color spaces.
下载说明:请别用迅雷下载,失败请重下,重下不扣分!