-
mymusic
基于matlab的MUSIC及解相干MUSIC算法(MUSIC MUSIC and coherent solution algorithm based on the matlab)
- 2014-08-06 22:32:26下载
- 积分:1
-
ex1
model for fir filter design
- 2014-10-06 15:17:18下载
- 积分:1
-
Matlab-filtering
matlab滤波程序,针对陀螺仪驱动信号进行数字滤波(Matlab filtering, in view of the gyroscope driving signal digital filter)
- 2013-10-30 19:22:15下载
- 积分:1
-
L1SVD
一种基于稀疏信号恢复的DOA估计方法,CS采用L1SVD方法进行信号恢复(A DOA estimation method based on sparse signal recovery is proposed. CS uses L1SVD method for signal recovery.)
- 2021-03-16 16:59:22下载
- 积分:1
-
QAMMATLAB
说明: 数字通信QAM调制及其MATLAB仿真程序,实现了QAM调制的基本性能(This is Digital communication QAM modulation and MATLAB simulation program ,and realize the basic performance of QAM modulation.)
- 2011-03-30 20:40:54下载
- 积分:1
-
整数倍频偏估计算的PDF格式的文档,以及算法实现程序,S&C算法的研究
SaCAlgorithmmatlab
整数倍频偏估计算的PDF格式的文档,以及算法实现程序,S&C算法的研究!(S&C Algorithm)
- 2014-04-27 10:45:34下载
- 积分:1
-
MY_MPCController3
说明: 基于模型预测控制算法做自动驾驶车辆跟踪圆型轨迹例程(Using model predictive control algorithm to track circular trajectory of autonomous vehicle)
- 2020-12-04 10:59:25下载
- 积分:1
-
dbemd
该程序是MATLAB源程序,可以用来对纹理进行处理得到纹理特征。(MATLAB source code of the procedure can be used for processing of the texture to be texture features.)
- 2009-05-09 21:09:57下载
- 积分:1
-
walker
模拟人物动态行走程序,可设定性别,速度等参数(Sims dynamic walking program)
- 2011-10-10 14:35:49下载
- 积分:1
-
fractal-use
分形的练习一
①Koch曲线
用复数的方法来迭代Koch曲线
clear i 防止i被重新赋值
A=[0 1] 初始A是连接(0,0)与(1,0)的线段
t=exp(i*pi/3)
n=2 n是迭代次数
for j=0:n
A=A/3 a=ones(1,2*4^j)
A=[A (t*A+a/3) (A/t+(1/2+sqrt(3)/6*i)*a) A+2/3*a]
end
plot(real(A),imag(A))
axis([0 1 -0.1 0.8])
②Sierpinski三角形
A=[0 1 0.5 0 0 1] 初始化A
n=3 迭代次数
for i=1:n
A=A/2 b=zeros(1,3^i) c=ones(1,3^i)/2
A=[A A+[c b] A+[c/2 c]]
end
for i=1:3^n
patch(A(1,3*i-2:3*i),A(2,3*i-2:3*i), b ) patch填充函数
end
(Fractal
Exercise One
The ① Koch curve
Plural iteration Koch curve
clear i to prevent i is reassigned
A = [0 1] initial A is a connection (0,0) and (1,0) of the segments
t = exp (i* pi/3)
n = 2 n is the number of iterations
for j = 0: n
A = A/3 a = ones (1,2* 4 ^ j)
A = [A (t* A+ a/3) (A/t+ (1/2+ sqrt (3)/6* i)* a) A+2/3* a]
end
plot (real (A), imag (A))
axis ([0 1-0.1 0.8])
② Sierpinski triangle
A = [0 1 0.5 0 0 1] initialized A
n = 3 the number of iterations.
for i = 1: n
A = A/2 b = zeros (1,3 ^ i) c = ones (1,3 ^ i)/2
A = [A A+ [c b] A+ [c/2 c]]
end
for i = 1:3 ^ n
patch (A (1,3* i-2: 3* i), A (2,3* i-2: 3* i), b ) patch filled function
end)
- 2013-03-02 10:03:09下载
- 积分:1