登录
首页 » matlab » Ordinary-and-Partial-Differential-Equation-Routin

Ordinary-and-Partial-Differential-Equation-Routin

于 2013-01-15 发布 文件大小:1036KB
0 107
下载积分: 1 下载次数: 2

代码说明:

  Very good book on matlab

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • pca
    PCA(Principal Component Analysis)预处理和最近邻分类程序(the code of Principal Component Analysis)
    2010-08-18 10:28:01下载
    积分:1
  • guanliandufnex
    基于灰色预测模型对旅游人数的预测matlab代码(Grey prediction model based on the forecast of tourist arrivals matlab code)
    2011-02-05 21:53:49下载
    积分:1
  • tuxiangchuli
    matlab的另一个功能就是应用在图像处理上。有强大的能力处理图像。希望对读者有很大的帮助(Another feature is the application of matlab in image processing. Has a strong ability to handle images. Hope to be very helpful to readers)
    2013-10-27 21:20:46下载
    积分:1
  • nankiu
    调试通过可以使用,一个计算声子晶体结构的一维传递矩阵法,对于初学者具有参考意义。( Debugging can be used, A one-dimensional transfer matrix method to calculate the phonon crystal structure, For beginners with a reference value.)
    2020-09-28 16:17:44下载
    积分:1
  • ship_image1
    分析仿真舰船目标散射点在不同初始相位下的慢时间多普勒历程(Analysis and Simulation of slow-time Doppler history of ship target scattering points in different initial phases)
    2019-02-16 15:28:14下载
    积分:1
  • 新建文件夹
    说明:  计算球的目标函数,主要是关于刚性球的,或者空心的圆柱壳(Calculating the objective function of a sphere)
    2020-06-17 23:40:02下载
    积分:1
  • qpsk_example
    qpsk的labview代码,可以实现仿真(qpsk labview code, is used to simulate)
    2015-02-11 16:46:59下载
    积分:1
  • DijkstraRouting
    用于MATLAB 6.0 (R12)环境 Dijkstra最短路由算法源代码 ( MATLAB 6.0 (R12) Dijkstra Shortest Path Routing )
    2009-03-14 10:41:15下载
    积分:1
  • Shadowing_and_Multipath
    无线信道阴影效应和多径效应的MATLAB仿真程序,来自 Modeling the Wireless Propagation Channel(Shadowing and Multipath)
    2009-04-09 23:43:26下载
    积分:1
  • EllipseFitByTaubin
    This is a fast non-iterative ellipse fit, and among fast non-iterative ellipse fits this is the most accurate and robust. It takes the xy-coordinates of data points, and returns the coefficients of the equation of the ellipse: ax^2 + bxy + cy^2 + dx + ey + f = 0, i.e. it returns the vector A=(a,b,c,d,e,f). To convert this vector to the geometric parameters (This is a fast non-iterative ellipse fit, and among fast non-iterative ellipse fits this is the most accurate and robust. It takes the xy-coordinates of data points, and returns the coefficients of the equation of the ellipse: ax^2+ bxy+ cy^2+ dx+ ey+ f = 0, i.e. it returns the vector A=(a,b,c,d,e,f). To convert this vector to the geometric parameters )
    2009-10-19 20:29:44下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载