-
chu
本程序可以实现具有较好相关性的ZC序列,其时频两域相关性很强(The program can achieve better correlation with the ZC sequence, time and frequency domain strong correlation)
- 2021-04-11 14:08:58下载
- 积分:1
-
MATLAB
主要讲了一些matlab的一些实用方法和技巧,方便对matlab的入门学习及掌握(Mainly about some matlab some practical methods and techniques to facilitate the entry of matlab learn and master)
- 2012-08-29 09:07:08下载
- 积分:1
-
imput_osc_data
导入示波器数据,可以非常方便地连续的将多组数字示波器的数据方便的转换到matlab中进行各种复杂的后续处理;方便于需要组建基于数字示波器的实验系统使用和写paper呵(Import oscilloscope data, can be very easy to successive groups of digital oscilloscope to facilitate the conversion of data into matlab carried out follow-up to deal with the complex convenience requiring the formation of experimental system based on the digital oscilloscope usage and writing paper, uh,)
- 2009-09-17 21:04:37下载
- 积分:1
-
Project
Calculates the Radon transform of a figure and returns the intersections of rays with the grid of the discretization in their projections
- 2010-11-01 22:34:53下载
- 积分:1
-
OFDM_SIM
NC-OFDM系统中发送端不同的数字调制方式(NC- OFDM system in different ways of digital modulation)
- 2013-12-15 11:48:15下载
- 积分:1
-
8PSK_soft_demod
8PSK的软解调算法,可用于软解调和信道译码的软信息输入(Soft input soft information 8PSK demodulation algorithm can be used for soft demodulation and channel decoding)
- 2015-04-08 22:50:07下载
- 积分:1
-
preimage_rbf
此程序功能运行后可以得到比较好的结果,请好好运行下!(matlab)
- 2010-09-23 17:09:19下载
- 积分:1
-
NewK-means-clustering-algorithm
说明: 珍藏版,可实现,新K均值聚类算法,分为如下几个步骤:
一、初始化聚类中心
1、根据具体问题,凭经验从样本集中选出C个比较合适的样本作为初始聚类中心。
2、用前C个样本作为初始聚类中心。
3、将全部样本随机地分成C类,计算每类的样本均值,将样本均值作为初始聚类中心。
二、初始聚类
1、按就近原则将样本归入各聚类中心所代表的类中。
2、取一样本,将其归入与其最近的聚类中心的那一类中,重新计算样本均值,更新聚类中心。然后取下一样本,重复操作,直至所有样本归入相应类中。
三、判断聚类是否合理
采用误差平方和准则函数判断聚类是否合理,不合理则修改分类。循环进行判断、修改直至达到算法终止条件。(NewK-means clustering algorithm ,Divided into the following several steps:
A, initialize clustering center
1, according to the specific problems, from samples with experience selected C a more appropriate focus the sample as the initial clustering center.
2, with former C a sample as the initial clustering center.
3, will all samples randomly divided into C, calculate the sample mean, each the sample mean as the initial clustering center.
Second, initial clustering
1, according to the sample into the nearest principle clustering center represents the class.
2, as this, take the its recent as clustering center of that category, recount the sample mean, update clustering center. And then taking off, as this, repeated operation until all samples into the corresponding class.
Three, judge clustering is reasonable
Adopt error squares principles function cluster analysis.after clustering whether reasonable, no reasonable criterion revisio)
- 2011-04-06 20:45:56下载
- 积分:1
-
ldpc
Low density parity code
- 2012-03-30 06:44:31下载
- 积分:1
-
graph_stochastic
利用逐个计数统计的方法,分析概率密度,绘制概率密度曲线(One by using the method of counting statistics, probability density analysis, probability density curve plotted)
- 2015-03-11 16:45:23下载
- 积分:1