登录
首页 » matlab » very-good-mmse-channel-matlab

very-good-mmse-channel-matlab

于 2012-05-24 发布 文件大小:7KB
0 102
下载积分: 1 下载次数: 42

代码说明:

  非常实用的自适应信道估计,均衡器,等等的原代码,非常有用 (Adaptive channel estimation, equalizer, and so the original code is very useful)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Person01-1.tar
    data based for face recognition
    2010-11-02 10:32:45下载
    积分:1
  • liziqun
    说明:  粒子群程序,是一种有效的优化算法,用于控制(Particle swarm procedure is an effective optimization algorithm is used to control)
    2008-10-03 16:41:42下载
    积分:1
  • Barrier_Up_Options
    进行barrier option 计算的程序包(Be calculated barrier option package)
    2014-02-16 08:46:15下载
    积分:1
  • niulafa-
    潮流计算 极坐标 牛拉法 牛拉发 牛拉发 极坐标 极坐标 潮流分析(Flow calculation in polar coordinates cattle Rafah, the ox-drawn ox-drawn trend analysis of polar coordinates to polar coordinates)
    2012-06-09 19:44:51下载
    积分:1
  • Robotic-comfort-zones
    关于机器人舒适度区域的研究文章,外国人写的。(Comfort zone on the robot research articles written by foreigners.)
    2013-08-23 09:39:32下载
    积分:1
  • Methods
    .Applied.Numerical.Methods.Using.MATLAB.-.Yang.Cao.Chung.and.Morris.文字版 matlab经典书目(.Applied.Numerical.Methods.Using.MATLAB.-.Yang.Cao.Chung.and.Morris. text version matlab Canon)
    2013-02-05 16:25:08下载
    积分:1
  • filters_7
    巴特沃斯低通滤波器、FIR低通滤波器、移动平均滤波器、中值滤波器、维纳滤波器、自适应滤波器和小波滤波器的比较(Butterworth low-pass filter, FIR low-pass filter, moving average filter, median filter, Wiener filter, adaptive filter and wavelet filter comparison)
    2016-12-02 11:37:42下载
    积分:1
  • code
    used for clonal selection
    2011-01-24 02:48:44下载
    积分:1
  • Matlabdaima
    实验matlab实验matlab实验matlab实验matlab(experimental matlab experimental matlabexperimental matlab experimental matlab)
    2013-09-21 17:52:35下载
    积分:1
  • Desktop
    特徵粹取(feature extraction)是特徵選取(feature selection)的延伸,簡單地說,我們希望將資料群由高維度的空間中投影到低維度的空間,因此,我們必須找出一組基底向量(base)來進行線性座標轉換,使得轉換後的座標,能夠符合某一些特性。 我們可以將特徵粹取分成「包含類別資訊」和「不包含類別資訊」兩大類。包含類別資訊指的是我們已經知道哪些資料分別歸屬於哪一類;而不包含類別資訊的特徵粹取則適用於我們不知道手上的資料點分別該歸屬於哪一類,甚至連該劃分成幾類都不知道的情況。對於這兩大類資料,可以分述如下: 對於「不包含類別資訊」的資料,我們通常使用「主要分量分析」(principal component analysis),簡稱 PCA。 (Cuiqu features (feature extraction) is feature selection (feature selection) extension, simply put, we want to base the projection data the high-dimensional space to low-dimensional space, so we have to find a set of basis vectors ( base) to the linear coordinate conversion, so that after the coordinate conversion, can meet a number of features. We can feature Cuiqu into " category contains information" and " does not contain a category of information," two categories. Contains categories of information refers to what we already know what kind of information are attributed to Cuiqu features include categories of information are not applicable to information we do not know the points are in the hands of the home in which category, and even that is divided into several class do not know the situation. For these two categories of information, can be divided as follows: For information " does not include the categories of information" , we usually use the " )
    2014-12-18 12:19:30下载
    积分:1
  • 696518资源总数
  • 104384会员总数
  • 26今日下载