-
fft
digital signal processing
- 2010-09-01 23:19:59下载
- 积分:1
-
Fingerprint_recongnition
一个指纹识别系统,用于提取指纹的特征。采用Matlab编译。包括若干测试图片。(A fingerprint identification system used to extract the fingerprint features. Compiled using Matlab. Including a number of test images.)
- 2010-02-12 15:34:39下载
- 积分:1
-
demorse
Con este archivo tu puedes decodificar un sonido morse y lo conviertes a palabras
- 2012-05-08 01:20:40下载
- 积分:1
-
compare
在数字图像处理中,运用MATLAB中的函数compare可以用来计算图像压缩前后的误差和直方图(In digital image processing using MATLAB functions compare the error and histogram can be used to calculate the image before and after compression)
- 2013-04-24 00:35:25下载
- 积分:1
-
particles_4X4
以4*4为模板在一幅灰度图像中寻找像素值大于给定阈值的点(Of 4* 4 in a gray image as a template to find the pixel value is greater than a given threshold point)
- 2010-11-27 11:01:58下载
- 积分:1
-
mallat_wavelet_program
说明: 小波谱分析mallat算法经典程序,希望对大家有所帮助!(Classical algorithm for spectral analysis mallat a small program, we want to help!)
- 2010-03-21 16:14:38下载
- 积分:1
-
panel_28_08_2010_02
panel plot toolbox for subplots
- 2011-08-27 03:47:50下载
- 积分:1
-
gui-filter
滤波器,可随意调节输入信号或滤波器参数,有时域频域两种显示(Filter, adjustable input signal or filter parameters, and sometimes two display domain and frequency domain)
- 2014-12-07 16:11:30下载
- 积分:1
-
chap7
《matlab应用大全》赵海滨编著,清华大学出版社,第七章主讲概率与数理统计(The application of matlab Zhao Haibin compiled, tsinghua university press, chapter 7 on the probability and mathematical statistics
)
- 2013-10-31 09:39:25下载
- 积分:1
-
NSGA
说明: 多目标遗传算法是NSGA-II[1](改进的非支配排序算法),该遗传算法相比于其它的多目标遗传算法有如下优点:传统的非支配排序算法的复杂度为 ,而NSGA-II的复杂度为 ,其中M为目标函数的个数,N为种群中的个体数。引进精英策略,保证某些优良的种群个体在进化过程中不会被丢弃,从而提高了优化结果的精度。采用拥挤度和拥挤度比较算子,不但克服了NSGA中需要人为指定共享参数的缺陷,而且将其作为种群中个体间的比较标准,使得准Pareto域中的个体能均匀地扩展到整个Pareto域,保证了种群的多样性。(消除了共享参数)。(Multi-objective genetic algorithm is nsga-ii [1] (improved non-dominant sorting algorithm), which has the following advantages compared with other multi-objective genetic algorithms: the complexity of the traditional non-dominant sorting algorithm is, while the complexity of nsga-ii is, where M is the number of objective functions and N is the number of individuals in the population.The introduction of elite strategy to ensure that some good individuals in the evolutionary process will not be discarded, thus improving the accuracy of the optimization results.The comparison operator of crowding degree and crowding degree not only overcomes the defect that NSGA needs to specify the Shared parameter artificially, but also takes it as the comparison standard between individuals in the population, so that individuals in the quasi-pareto domain can uniformly expand to the whole Pareto domain, ensuring the diversity of the population.(eliminating Shared parameters).)
- 2020-02-13 19:30:43下载
- 积分:1