rtejfgds
代码说明:
现有的代数特征的抽取方法绝大多数采用一维的方法,即首先将图像转换为一维向量,再用主分量分析(PCA),Fisher线性鉴别分析(LDA),Fisherfaces式核主分量分析(KPCA)等方法抽取特征,然后用适合的分类器分类。针对一维方法维数过高,计算量大,协方差矩阵常常是奇异矩阵等不足,提出了二维的图像特征抽取方法,计算量小,协方差矩阵一般是可逆的,且识别率较高。(existing algebra feature extraction method using a majority of the peacekeepers, First images will be converted into one-dimensional vector, and then principal component analysis (PCA), Fisher Linear Discriminant Analysis (LDA), Fisherfaces audits principal component analysis (KPCA), and other selected characteristics, then use the appropriate classification for classification. Victoria against an excessive dimension method, calculation, covariance matrix is often inadequate singular matrix, a two-dimensional image feature extraction method, a small amount of covariance matrix is usually reversible, and the recognition rate higher.)
文件列表:
my_2dpca.m
test_2dpca.m
下载说明:请别用迅雷下载,失败请重下,重下不扣分!