登录
首页 » matlab » Package-Book

Package-Book

于 2012-05-15 发布 文件大小:56089KB
0 136
下载积分: 1 下载次数: 148

代码说明:

  Elad 《Sparse and Redundant Representations 》一书中的代码,关于稀疏理论,介绍的比较系统

文件列表:

Package-Book




............\Chapter_01_3D_spheres.m,7575,2012-01-13
............\Chapter_01_LpLq_demo.m,1161,2012-01-13
............\Chapter_01_normDescroption.m,710,2012-01-13
............\Chapter_02_DesignFrame.m,1842,2012-01-13
............\Chapter_02_GrassDemo.m,1459,2012-01-13
............\Chapter_02_picketfence.m,412,2012-01-13
............\Chapter_03_Demo_Greedy.m,5267,2012-01-13
............\Chapter_03_Demo_Relaxation.m,3565,2012-01-13
............\Chapter_03_IRLS_noNoise.m,1239,2012-01-13
............\Chapter_03_WeakMP_efficiency.asv,1131,2012-01-13
............\Chapter_03_WeakMP_efficiency.m,1584,2012-01-13
............\Chapter_04_Bounds.m,1277,2012-01-13
............\Chapter_04_TwoOrthoBP_Proof.m,495,2012-01-13
............\Chapter_05_IRLS.m,3791,2012-01-13
............\Chapter_05_LARS.m,6931,2012-01-13
............\Chapter_05_LARS_DEMO.asv,1699,2012-01-13
............\Chapter_05_LARS_DEMO.m,1825,2012-01-13
............\Chapter_05_LARS_vs_OMP.m,3665,2012-01-13
............\Chapter_05_No_Uniqueness_Noise_demo.m,3224,2012-01-13
............\Chapter_05_TwoEps_Noise_demo.asv,1500,2012-01-13
............\Chapter_05_TwoEps_Noise_demo.m,1855,2012-01-13
............\Chapter_06_IS_Sanity_Check.asv,1074,2012-01-13
............\Chapter_06_IS_Sanity_Check.m,1132,2012-01-13
............\Chapter_06_Iterated_Shrinkage.asv,14655,2012-01-13
............\Chapter_06_Iterated_Shrinkage.m,14787,2012-01-13
............\Chapter_07_ShowTheGap1.asv,2528,2012-01-13
............\Chapter_07_ShowTheGap1.m,2568,2012-01-13
............\Chapter_07_ShowTheGap2.m,6484,2012-01-13
............\Chapter_08_BP_vs_DS.m,7528,2012-01-13
............\Chapter_09_TV_vs_Heaviside.m,586,2012-01-13
............\Chapter_10_Create_Atom_Examples.m,1603,2012-01-13
............\Chapter_10_DataCameraman.mat,122522,2012-01-13
............\Chapter_10_Deblurring.asv,15602,2012-01-13
............\Chapter_10_Deblurring.m,15610,2012-01-13
............\Chapter_10_Deblurring_Results.mat,54754810,2012-01-13
............\Chapter_10_Shrinkage_Rho.m,2330,2012-01-13
............\Chapter_11_Graphs.asv,6533,2012-01-13
............\Chapter_11_Graphs.m,6940,2012-01-13
............\Chapter_11_RandomOMP.m,2391,2012-01-13
............\Chapter_11_Synthetic.m,8910,2012-01-13
............\Chapter_12_Demo1.asv,3809,2012-01-13
............\Chapter_12_Demo1.m,4030,2012-01-13
............\Chapter_12_Demo1.mat,2371632,2012-01-13
............\Chapter_12_Demo2.asv,3440,2012-01-13
............\Chapter_12_Demo2.m,3651,2012-01-13
............\Chapter_12_DispDict.m,1753,2012-01-13
............\Chapter_12_TrainDic.m,11586,2012-01-13
............\Chapter_12_TrainDic_Fast.m,12084,2012-01-13
............\Chapter_13_AverageL.m,751,2012-01-13
............\Chapter_14_Global.m,3197,2012-01-13
............\Chapter_14_GlobalTrainedDictionary.mat,126069,2012-01-13
............\Chapter_14_Global_SURE.m,3504,2012-01-13
............\Chapter_14_KSVDdenoising.asv,6829,2012-01-13
............\Chapter_14_KSVDdenoising.m,7037,2012-01-13
............\Chapter_14_KSVDGlobalDenoising.asv,3704,2012-01-13
............\Chapter_14_KSVDGlobalDenoising.m,3708,2012-01-13
............\Chapter_14_Local1.m,3754,2012-01-13
............\Chapter_14_Local2.m,4447,2012-01-13
............\Chapter_14_NLMDenoising.m,1545,2012-01-13
............\Chapter_15_CoreInpainting0.m,6422,2012-01-13
............\Chapter_15_CoreInpainting1.m,6069,2012-01-13
............\Chapter_15_CoreInpainting2KSVD.m,8748,2012-01-13
............\Chapter_15_CoreInpainting2MOD.m,7300,2012-01-13
............\Chapter_15_CoreInpainting3KSVD.asv,5864,2012-01-13
............\Chapter_15_CoreInpainting3KSVD.m,5864,2012-01-13
............\Chapter_15_ImpulseNoiseRemoval.m,5103,2012-01-13
............\Chapter_15_Local_MCA_KSVD.asv,9442,2012-01-13
............\Chapter_15_Local_MCA_KSVD.m,9593,2012-01-13
............\Chapter_15_ScaleUp_Main.m,1829,2012-01-13
............\Chapter_15_ScaleUp_Training_and_Testing1.m,6569,2012-01-13
............\Chapter_15_ScaleUp_Training_and_Testing2.m,7338,2012-01-13

............\fht.m,218,2012-01-13
............\fingerprint.png,184561,2012-01-13
............\ifht.m,220,2012-01-13
............\lena.png,151199,2012-01-13
............\omp.m,4601,2012-01-13
............\omp2.m,5519,2012-01-13
............\peppers256.png,40181,2012-01-13
............\private
............\.......\make.m,797,2012-01-13
............\.......\myblas.c,5353,2012-01-13
............\.......\myblas.h,6831,2012-01-13
............\.......\omp2mex.c,3385,2012-01-13
............\.......\omp2mex.m,896,2012-01-13
............\.......\omp2mex.mexw32,17920,2012-01-13
............\.......\ompcore.c,14351,2012-01-13
............\.......\ompcore.h,3122,2012-01-13
............\.......\ompmex.c,2742,2012-01-13
............\.......\ompmex.m,792,2012-01-13
............\.......\ompmex.mexw32,17408,2012-01-13
............\.......\ompprof.c,4523,2012-01-13
............\.......\ompprof.h,3086,2012-01-13
............\.......\omputils.c,1453,2012-01-13
............\.......\omputils.h,2238,2012-01-13

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • ImageEnhancement_Frequence
    说明:  频域图像增强,包含了多个实例,MATLAB环境下调试通过。(image enhancement in frequency domain)
    2009-08-13 15:52:39下载
    积分:1
  • 2083627指纹识别
    说明:  指纹图像预处理、特征提取、特征匹配的matlab程序及处理结果(Fingerprint image preprocessing, feature extraction, feature matching matlab program and processing results)
    2019-04-06 20:36:12下载
    积分:1
  • ncut_multiscale_1_4
    ncut分割算法matlab代码,实现图像分割的较好的方法(ncut segmentation algorithm Matlab code to achieve a better image segmentation methods)
    2020-10-29 20:19:56下载
    积分:1
  • MARK_Dehaze
    2009年CVPR最佳论文《Single image haze removal using dark channel prior》暗原色图像去雾的算法实现。与原文不同的是本程序没有完成最后matting细化效果的部分,但仍能够达到视觉上可以接受的去雾效果。计算机视觉课程作业。工程运行于VS2008环境,需要OpenCV支持。Debug目下exe文件可以直接双击运行查看结果。(CVPR 2009 Best Paper " Single image haze removal using dark channel prior" to the dark fog of the primary image algorithm. The difference is that with the original program did not complete the final matting refinement part,yet haze-removal result is visually acceptable. Visual course work. This project runs under VS2008 with OpenCV. Double click the exe file under Debug folder to check the final result.)
    2011-08-10 16:46:35下载
    积分:1
  • matlab-phase-unwrapping
    代码为matlab源程序,主要功能是对干涉SAR数据进行相位解缠。(Matlab source code, the main function is to phase unwrapping interferometric SAR data.)
    2012-12-11 15:26:47下载
    积分:1
  • DCT
    多聚焦图像融合是将多幅成像条件相同而且关于同一场景的不同聚焦部位图像,融合成一幅各处都清晰的图像。编写多聚焦图像融合算法程序,实现图像融合。(Multi-focus image fusion is to be pieces of the same imaging conditions and different focus parts of the image on the same scene, fused into one everywhere a clear image. Preparation of multi-focus image fusion algorithm program to achieve fusion.)
    2020-06-26 19:40:02下载
    积分:1
  • Code
    遥感图像处理的基本操作:PCA变换、KT变换、直方图显示、彩色显示等(The basic operation of the remote sensing image processing: PCA transform, KT transform, histogram display, color display)
    2021-05-16 17:30:02下载
    积分:1
  • JPEG.M
    Jpeg图像压缩的Matlab源码,供研究Jpeg图像压缩的朋友参考使用。(Jpeg image compression Matlab source for the study Jpeg image compression friends use and reference.)
    2007-03-22 23:32:13下载
    积分:1
  • efficient_subpixel_registration
    说明:  此算法可以实现任意两个图像的配准(整体平移) (This algorithm can achieve any two image registration (the overall translation))
    2009-07-31 12:42:01下载
    积分:1
  • Genetic-algorithms-
    本文主要介绍遗传算法的基本理论,叙述遗传算法在图像增强的的主要应用,即将原始图像变得更加清晰,特征变得更加明显。 现今关于图像增强的算法有很多,而这些算法大多是基于退化函数或者点扩展函数的知识进行图像处理的。当图像出现模糊或噪声影响大时,设计出的图像清晰化的效果肯定不够理想,因此有必要对图像进行增强处理。于是,可利用到遗传算法这种成熟稳定的仿生物进化的全局寻优算法,进行图像增强,由于遗传算法控制参数少、自适应度高,将选择该方法对图像退化分别进行不同的清晰化处理. 这样既增强了图像的对比度,又克服了传统直方图均衡化处理所造成的灰度级损失等缺点。 通过实验去表明,遗传算法从全局寻优的角度出发,能够较为精确地估计退化系统函数。和传统的线性增强、直方图均衡进行比较。实验结果表明该方法能改善原图像视觉效果,便于之后的图像分析。 (This paper mainly introduces the basic theory of genetic algorithm, genetic algorithm (ga) in the main application of image enhancement, the original image is more clear, characteristic becomes more obvious. Today about the image enhancement algorithm are many, and most of these algorithms is based on the degradation function or the knowledge of the point spread function of image processing. When the image appears fuzzy or noise influence, designed the image clarity of effect must not ideal, therefore it is necessary to enhance the image. Then, genetic algorithm is available to the mature and stable evolution of the global optimization algorithm, for image enhancement, due to less genetic algorithm control parameters, since the high fitness, will choose the method of image degradation, respectively, to manipulate the different motivation. It can enhance the image contrast, and overcome the traditional histogram equalization processing grayscale loss caused by the faults. Throug)
    2013-03-26 22:46:15下载
    积分:1
  • 696518资源总数
  • 104432会员总数
  • 16今日下载