登录
首页 » matlab » 1213547

1213547

于 2013-07-24 发布 文件大小:1KB
0 227
下载积分: 1 下载次数: 27

代码说明:

  卡尔曼滤波算法实现,Matlab语言算法研究,经典卡尔曼滤波算法,使用于航迹跟踪和外推。(Kalman filter algorithm, Matlab language algorithms, rest, thank you thank you)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • QPSK
    QPSK,BPSK,PSK simulation for BER performance
    2010-09-16 05:01:38下载
    积分:1
  • tp2expo
    exponnentiel law with matlab
    2011-05-16 03:25:46下载
    积分:1
  • 三种方法的弹道仿真
    matlab/simulink 三种方法的弹道仿真(追踪法、比例导引法、平行接近法) (matlab/simulink Trajectory Simulation of three methods (tracing method, proportional navigation law, parallel close to the law))
    2021-04-24 11:08:47下载
    积分:1
  • RobotDiferencial
    Code for program a robot diferencial
    2015-03-05 00:12:00下载
    积分:1
  • new
    Pipelined Chebyshev Functional Link Artificial Recurrent Neural Network for Nonlinear Adaptive Filter
    2010-09-03 03:35:35下载
    积分:1
  • safharmonicAPF
    shunt active filter
    2009-12-01 19:43:55下载
    积分:1
  • pingjia
    图像质量评价,包括图像均方误差、信噪比比较等(Image quality evaluation, including images mean square error, signal to noise ratio comparison)
    2011-05-02 11:01:50下载
    积分:1
  • kongying
    实现bpsk的调制解调 ,有图,基于matlab仿真 (Achieve bpsk modulation and demodulation, a map)
    2011-06-09 22:01:47下载
    积分:1
  • Applied-Numerical-Methods-Using-MATLAB---Yang-Cao
    EM modeling with matlab
    2012-06-12 21:13:52下载
    积分:1
  • shibie
    基于奇异值分解的人脸识别方法 梁毅雄 龚卫国 潘英俊 李伟红 刘嘉敏 张红梅 提出了一种将傅里叶变换和奇异值分解相结合的人脸自动识别方法.首先对人脸图像进行傅里叶变换,得到其具有位移不变特性的振幅谱表征.其次,从所有训练图像样本的振幅谱表征中给定标准脸并对其进行奇异值分解,求出标准特征矩阵,再将人脸的振幅谱表征投影到标准特征矩阵后得到的投影系数作为该人脸的模式特征.然后,对经典的最近邻分类器算法进行了改进,并采用模式特征之间的欧式距离作为相似性度量,从而完成对未知人脸的识别.采用ORL (Olivetti Research Laboratory)人脸库对本文提出的人脸识别方法进行验证,获得了100.00 的识别率.实验结果表明,本方法优于现有的基于奇异值分解的人脸识别方法,且对表情、姿态变换等具有一定的鲁棒性. (Face recognition based on singular value decomposition method Deliberate simultaneously Gong Weiguo Li Wei Hung Stephen Lau, Hong-Mei Zhang Ying-Jun Pan Paper, a Fourier transform and singular value decomposition of the combination of automatic face recognition. First of all, the face image by Fourier transformation, it has the same characteristics of the displacement amplitude spectra. Secondly, all training The amplitude spectrum of the sample images given in standard face representation and its singular value decomposition, find the standard characteristic matrix, then the amplitude of spectral characterization of human faces projected onto the standard characteristic matrix of projection coefficients obtained as the face of the model features . Then, the classical nearest neighbor classifier is improved, and the use of Euclidean distance between pattern features as the similarity measure, thus completing the identification of unknown human faces. using ORL (Olivetti Research La)
    2010-05-17 14:29:31下载
    积分:1
  • 696518资源总数
  • 106215会员总数
  • 5今日下载