-
improve-geodetic
用least square的方法解决实际更新就的地理位置数据的matlab代码。给出数据库~但也可以自行添加想要更新的数据库。(Matlab code to solve the actual update on the geographic location data using least square method. Can add no database is given to the database you want to update.)
- 2013-01-28 07:10:26下载
- 积分:1
-
code
MATLAB优化算法和案例应用,模糊逼近算法、模糊RBF网络、基于FCEM的TRIZ评价(MATLAB optimization algorithm and a case application, fuzzy approximation algorithm, fuzzy RBF network, TRIZ uation based on FCEM)
- 2015-03-30 14:53:39下载
- 积分:1
-
chapter2
matlab从入门到高级进阶的必备好书,看了以后,希望对大家学习matlab有很高的提高!(matlab from entry to senior advanced essential books, looking after, in the hope that everyone has a very high learning matlab improve!)
- 2007-07-17 13:07:52下载
- 积分:1
-
05572430
提出了一种改进的独立分量分析方法对脑电信号进行去伪迹消噪,取得了相当不错的效果(An improved method of independent component analysis to EEG artifact noise cancellation, very good results achieved)
- 2010-11-04 19:33:51下载
- 积分:1
-
Butterworth_low_pass_and_high_pass_filters
对二维图像实现巴特沃斯低通和高通滤波,已经仿真,效果不错。(Pairs of two-dimensional image realization of Butterworth low-pass and high-pass filtering, has been simulation, good results.)
- 2009-11-18 20:40:17下载
- 积分:1
-
work
code matlab transmission
- 2009-12-16 17:38:03下载
- 积分:1
-
upf_demos
说明: % PURPOSE : Demonstrate the differences between the following filters on the same problem:
%
% 1) Extended Kalman Filter (EKF)
% 2) Unscented Kalman Filter (UKF)
% 3) Particle Filter (PF)
% 4) PF with EKF proposal (PFEKF)
% 5) PF with UKF proposal (PFUKF)( PURPOSE: Demonstrate the differences between the following filters on the same problem: 1) Extended Kalman Filter (EKF) 2) Unscented Kalman Filter (UKF) 3) Particle Filter (PF) 4) PF with EKF proposal ( PFEKF) 5) PF with UKF proposal (PFUKF))
- 2008-09-13 12:21:05下载
- 积分:1
-
nonlinear
-u"+u^2=x, 0<x<1
u(0)=0, u(1)=0
- 2011-04-20 21:44:04下载
- 积分:1
-
MMWIR
红外与雷达的异类传感器异步数据融合,采用序惯融合结构(Infrared and radar sensors heterogeneous asynchronous data fusion, using Sequential fusion structure)
- 2013-11-08 22:07:02下载
- 积分:1
-
Filter_LMS_mu
研究用于自适应均衡器的LMS算法。研究步长的影响。分别画出W=2.9时,mu= 0.01、0.04和0.08情况下的MSE学习曲线(Research for the adaptive LMS algorithm equalizer. Research on the impact of the step. Draw W = 2.9, respectively, when, mu = MSE learning curve 0.01,0.04 and 0.08 in case of)
- 2014-01-29 12:13:40下载
- 积分:1