-
chapter
说明: 这个文件是为了模拟和预测各种各样的位移和压缩量。 (preditting the displacement)
- 2011-03-09 08:09:02下载
- 积分:1
-
alamouti
Matlab script for Alamouti code
- 2011-05-16 04:24:55下载
- 积分:1
-
xiaobo1
sin函数的简单一维小波变换与一维傅里叶变换的比较算法(sin function with a simple one-dimensional wavelet transform one-dimensional Fourier transform of the comparison algorithm)
- 2013-10-03 09:49:42下载
- 积分:1
-
Archive
sobel算子进行边缘监测,附有源代码和效果图(sobel operator edge monitoring, with the source code and effect diagram)
- 2013-10-04 23:36:09下载
- 积分:1
-
2
说明: 基于平面波展开 传输矩阵计算2维矩形光子晶体模型 计算可得出相关图谱
handbook中除了参数说明还有参考文献等(Plane wave expansion based on the transfer matrix calculation of 2-D model calculation of rectangular photonic crystal patterns can be drawn from the relevant handbook of parameters except that there are references such as)
- 2007-08-28 18:06:50下载
- 积分:1
-
Riccati
C++ code for solution of Riccati equation based on chosen model. Solution is applicable for kalman filtering.
- 2014-11-02 02:52:23下载
- 积分:1
-
AVI2Images
AVI2Images 读取指定的AVI视频文件,并把视频帧依次写入图像文件。(AVI2Images reads the specified AVI video files and write video frames to the image files in order.)
- 2013-10-06 08:56:19下载
- 积分:1
-
ESPRIT_DOA
基于ESPRIT算法的DOA估计,利用ESPRIT算法进行DOA估计(DOA estimate with arithmetic)
- 2013-11-25 19:31:04下载
- 积分:1
-
CXroot
Matlab code for nonlinear complex function root finding
- 2012-01-20 08:47:14下载
- 积分:1
-
MyKmeans
实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。 缺点:产生类的大小相差不会很大,对于脏数据很敏感。 改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。步骤: 1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 以下是循环的: 2,将余下的对象分到各个类中去(根据与medoid最相近的原则); 3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。 4,这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。(achieving K-mean clustering algorithms : K-means algorithm : given the number of Class K, n will be assigned to target K to 000 category, making target category of the similarity between the largest category of the similarity between the smallest. Disadvantages : class size have no great difference for dirty data is very sensitive. Improved algorithms : k-medoids methods. Here a selection of objects called mediod to replace the center of the above, the logo on a medoid this category. Steps : 1, arbitrary selection of objects as K medoids (O1, O2, Ok ... ... Oi). Following is a cycle : 2, the remaining targets assigned to each category (in accordance with the closest medoid principle); 3, for each category (Oi), the order of selection of a Or, calculated Oi Or replace the consumption-E (Or))
- 2005-07-26 01:32:58下载
- 积分:1