登录
首页 » matlab » Classification_toolbox

Classification_toolbox

于 2009-01-14 发布 文件大小:359KB
0 120
下载积分: 1 下载次数: 88

代码说明:

  Duda的《模式分类》第二版的配套的Matlab源代码,非常完整(Duda s pattern classification of matching the second edition of the Matlab source code, very complete)

文件列表:

Classification_toolbox

......................\Ada_Boost.m
......................\ADDC.m
......................\AGHC.m
......................\Backpropagation_Batch.m
......................\Backpropagation_CGD.m
......................\Backpropagation_Quickprop.m
......................\Backpropagation_Recurrent.m
......................\Backpropagation_SM.m
......................\Backpropagation_Stochastic.m
......................\Balanced_Winnow.m
......................\Bayesian_Model_Comparison.m
......................\Bhattacharyya.m
......................\BIMSEC.m
......................\C4_5.m
......................\calculate_error.m
......................\calculate_region.m
......................\CART.m
......................\CARTfunctions.m
......................\Cascade_Correlation.m
......................\Chernoff.m
......................\Classification.txt
......................\classification_error.m
......................\classifier.m
......................\classifier.mat
......................\classifier_commands.m
......................\classify_paramteric.m
......................\click_points.m
......................\combinations.m
......................\Competitive_learning.m
......................\Components_without_DF.m
......................\Components_with_DF.m
......................\contents.m
......................\datasets
......................\........\chess.mat
......................\........\clouds.mat
......................\........\DHSchapter10.mat
......................\........\DHSchapter2.mat
......................\........\DHSchapter3.mat
......................\........\DHSchapter4.mat
......................\........\DHSchapter5.mat
......................\........\DHSchapter6.mat
......................\........\DHSchapter7.mat
......................\........\DHSchapter8.mat
......................\........\DHSchapter9.mat
......................\........\DHS_cover.mat
......................\........\four_spiral.mat
......................\........\spiral.mat
......................\........\XOR.mat
......................\Deterministic_annealing.m
......................\Deterministic_Boltzmann.m
......................\Deterministic_SA.m
......................\Discrete_Bayes.m
......................\Discriminability.m
......................\DSLVQ.m
......................\EM.m
......................\enter_distributions.m
......................\enter_distributions.mat
......................\enter_distributions_commands.m
......................\Exhaustive_Feature_Selection.m
......................\feature_selection.m
......................\feature_selection.mat
......................\Feature_selection.txt
......................\feature_selection_commands.m
......................\FindParameters.m
......................\FindParameters.mat
......................\FindParametersFunctions.m
......................\FishersLinearDiscriminant.m
......................\fuzzy_k_means.m
......................\GaussianParameters.m
......................\GaussianParameters.mat
......................\generate_data_set.m
......................\Genetic_Algorithm.m
......................\Genetic_Culling.m
......................\Genetic_Programming.m
......................\Gibbs.m
......................\HDR.m
......................\high_histogram.m
......................\Ho_Kashyap.m
......................\ICA.m
......................\ID3.m
......................\Infomat.m
......................\Information_based_selection.m
......................\Interactive_Learning.m
......................\Kohonen_SOFM.m
......................\k_means.m
......................\Leader_Follower.m
......................\LMS.m
......................\load_file.m
......................\Local_Polynomial.m
......................\LocBoost.m
......................\LocBoostFunctions.m
......................\loglikelihood.m
......................\LS.m
......................\LVQ1.m
......................\LVQ3.m
......................\make_a_draw.m
......................\Marginalization.m
......................\MDS.m

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • vr
    说明:  matlab需需要的M文件,可以在里面调用买很好用没人穿就是,很可惜(files are needed by MATLAB)
    2011-11-05 14:39:22下载
    积分:1
  • KASAMI-matlab-code
    KASAMI CODE USED FOR SPREAD SPECTRUM COMMUNICATION DESIGNED USING MAT LAB CODE
    2013-05-15 21:47:05下载
    积分:1
  • matlab12
    说明:  观测器设计 对MATLAB学习帮助很大(Observer design study of great help MATLAB)
    2006-04-28 12:55:33下载
    积分:1
  • wuxian
    基于AOA和TDOA的无线传感器网络三维联合定位算法 三维 无线传感器网络 定位 AOA和TDOA(AOA and TDOA-based wireless sensor network localization algorithm for three-dimensional three-dimensional co-localization of wireless sensor networks AOA and TDOA)
    2010-08-26 21:56:26下载
    积分:1
  • LTESC_FDMA
    本文主要介绍频域均衡在LTE项目上SC_FDMA上行链路上的应用(In this paper, frequency domain equalization projects in the LTE uplink SC_FDMA Application are introduced)
    2009-04-17 20:47:54下载
    积分:1
  • C_eig
    利用幂法和反幂法求解按模最小特征值,按模最大特征值。与MATLAB中eig功能相似 (get the character value of a matrix, similiar with the function eig in matlab)
    2013-12-02 11:04:25下载
    积分:1
  • KS样本划分代码
    K-S,即kolmogorov检验法,亦称拟合优度检验法。用来检验给定的一组数据是否来自分布F=F0,原理是若H0成立,则max|v/n-F0(qj)|应该很小,用手算几乎在绝大多数情况下是不可能的,通常借助统计软件,如SAS,S+等(K-S, namely Kolmogorov test, also known as goodness of fit test. It is used to test whether a given set of data comes from the distribution F=F0, and the principle is that if the H0 is set up, the max|v/n-F0 (QJ) should be very small, and the hand calculation is almost impossible in most cases, usually with the aid of statistical software, such as SAS, S+, etc.)
    2018-04-17 19:07:02下载
    积分:1
  • 91331988FCM
    针对当前存在的大量数值型数据,将连续型数据离散化,有利于计算机直接处理变量。(In view of the existence of a large number of numerical data, the discretization of continuous data is conducive to deal directly with the variable computer.)
    2009-07-04 10:45:38下载
    积分:1
  • LabColorSegmentation
    说明:  lab颜色模型下的图像分割方法,在matlab下编写,对生物图像很有用的。(lab model of color image segmentation methods in Matlab to prepare for biological images very useful.)
    2006-03-28 22:42:53下载
    积分:1
  • MIMO_Channel_Simulation
    一个MIMO信道仿真实现的例子,有详细的文档说明和完整的代码(a MIMO Channel Simulation example, a detailed description and documentation of code integrity)
    2007-03-08 19:49:17下载
    积分:1
  • 696518资源总数
  • 104384会员总数
  • 26今日下载