One-dimensional-extremum-problem
代码说明:
说明: 第6章 无约束一维极值问题 所在章节 函数名 功 能 6.1 minJT 用进退法求解一维函数的极值区间 6.2 minHJ 用黄金分割法求解一维函数的极值 6.3 minFBNQ 用斐波那契法求解一维函数的极值 6.4 minNewton 用牛顿法求解一维函数的极值 6.5 minGX 用割线法求解一维函数的极值 6.6 minPWX 用抛物线法求解一维函数的极值 6.7 minTri 用三次插值法求解一维函数的极值 6.8.1 minGS 用Goldstein法求解一维函数的极值 6.8.2 minWP 用Wolfe-Powell法求解一维函数的极值 (Chapter 6 unconstrained extremum problem one-dimensional sections of the functional 6.1 minJT function method for solving one-dimensional with the advance and retreat of the extreme range of 6.2 minHJ function of the golden section method using one-dimensional function of the extreme 6.3 minFBNQ use Fibonacci method one-dimensional function of the extreme 6.4 minNewton Newton method with one-dimensional function with extreme 6.5 minGX one-dimensional secant method to solve the extreme 6.6 minPWX function method for solving one-dimensional parabolic function of the extreme 6.7 minTri method with cubic interpolation one-dimensional function of the extreme 6.8.1 minGS Goldstein method with one-dimensional function of the extreme 6.8.2 minWP Wolfe-Powell method with a one-dimensional extreme value function)
文件列表:
第6章 无约束一维极值问题
下载说明:请别用迅雷下载,失败请重下,重下不扣分!