-
adaptive-lpf
designing of filfiter by adaptive algorithms liks lms
- 2015-01-23 13:08:25下载
- 积分:1
-
CART
数据挖掘算法中的CART算法,matlab版本(CART matlab)
- 2010-06-20 14:45:55下载
- 积分:1
-
SimulateDWMRI123
You can use this script to generate synthetic DWMRI or DTI datasets
- 2010-11-05 23:26:39下载
- 积分:1
-
CtrlLAB_MATLABToolbox
反馈控制CtrlLAB工具箱-MATLAB-Toolbox(feedback control CtrlLAB Toolbox- MATLAB-Toolbox)
- 2007-04-28 22:39:47下载
- 积分:1
-
fantao_v89
用平面波展开法计算二维声子晶体带隙,这个有中文注释,看得明白,二维声子晶体FDTD方法计算禁带宽度的例子。( Computation Method D phononic bandgap plane wave, The Chinese have a comment, understand it, Dimensional phononic crystals FDTD method calculation examples band gap.)
- 2021-04-07 20:39:01下载
- 积分:1
-
fz
说明: 伺服系统仿真的MATLAB仿真以及结果,可清楚的看出与分析偏差(Servo system of the MATLAB simulation and the simulation results, and analysis shows a clear deviation)
- 2009-04-01 15:58:41下载
- 积分:1
-
gfyfytygugytyfuyftrdtfy
matlab and vc used by program and application
- 2010-03-04 00:37:29下载
- 积分:1
-
work
说明: 图形定位,包括常见的照片中一些所需要处理的特征的定位等(Graphic positioning)
- 2011-03-12 21:44:29下载
- 积分:1
-
sift
1 SIFT 发展历程
SIFT算法由D.G.Lowe 1999年提出,2004年完善总结。后来Y.Ke将其描述子部分用PCA代替直方图的方式,对其进行改进。
2 SIFT 主要思想
SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量。
3 SIFT算法的主要特点:
a) SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。
b) 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配[23]。
c) 多量性,即使少数的几个物体也可以产生大量SIFT特征向量。
d) 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求。
e) 可扩展性,可以很方便的与其他形式的特征向量进行联合。
4 SIFT算法步骤:
1) 检测尺度空间极值点
2) 精确定位极值点
3) 为每个关键点指定方向参数
4) 关键点描述子的生成
本包内容为sift算法matlab源码(1 SIFT course of development
SIFT algorithm by DGLowe in 1999, the perfect summary of 2004. Later Y.Ke its description of the sub-part of the histogram with PCA instead of its improvement.
2 the SIFT main idea
The SIFT algorithm is an algorithm to extract local features in scale space to find the extreme point of the extraction location, scale, rotation invariant.
3 the main features of the SIFT algorithm:
a) SIFT feature is the local characteristics of the image, zoom, rotate, scale, brightness change to maintain invariance, the perspective changes, affine transformation, the noise also maintain a certain degree of stability.
b) unique (Distinctiveness), informative, and mass characteristics database for fast, accurate matching [23].
c) large amounts, even if a handful of objects can also produce a large number of SIFT feature vectors.
d) high-speed and optimized SIFT matching algorithm can even achieve real-time requirements.
e) The scalability can be very convenient fe)
- 2012-05-25 15:31:16下载
- 积分:1
-
IMM
室内无线定位,使用交互模型进行定位,matlab程序(wireless localization,IMM)
- 2013-10-27 00:58:28下载
- 积分:1