登录
首页 » matlab » libsvm

libsvm

于 2010-04-21 发布 文件大小:40KB
0 100
下载积分: 1 下载次数: 0

代码说明:

说明:  支持向量机(SVM)matlab 代码,附有详细的使用说明及举例讲解。 (This tool provides a simple interface to LIBSVM, a library for support vector machines.)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • shichangfa
    MATLAB人工势场法算法源代码 可以用于移动机器人路径规划上面(MATLAB artificial potential field algorithm source code can be used for Mobile Robot Path Planning above)
    2009-03-22 18:10:39下载
    积分:1
  • GA_matlab
    遗传算法的matlab实现程序源代码,txt格式,不是m文件(genetic algorithm)
    2013-04-01 21:35:25下载
    积分:1
  • ccpw2009_submission_6
    MATLAB FACE DETECTION FANTASTIC
    2010-05-25 21:33:21下载
    积分:1
  • contour
    This code enables to make contours.
    2013-02-08 15:01:39下载
    积分:1
  • any2csv
    mat lab code .. which converts any to csv file format
    2011-11-17 14:20:14下载
    积分:1
  • power_svc_pss
    Matlab用PSS做的SVC仿真,可以运行!(SVC Matlab simulation with PSS to do, you can run!)
    2010-05-26 15:14:05下载
    积分:1
  • MATLABshenjingwangluo
    本工具箱详细地说明了matlab的各种算法实现,方便大家学习matlab的基本应用,进一步加深了对matlab的认识。(The toolkit explains in detail the various algorithms matlab, matlab facilitate them to learn the basic application, and further deepen the understanding of matlab.)
    2010-08-20 18:53:34下载
    积分:1
  • 68693596PLL
    Algorithm PLL for inverter dc-AC
    2013-11-06 17:30:08下载
    积分:1
  • MATLAB-GUI
    基于matlab图像处理的GUI设计,里面有程序和报告设计(GUI design based on MATLAB image processing)
    2014-12-23 03:26:38下载
    积分:1
  • 1807.01622
    说明:  深度神经网络在函数近似中表现优越,然而需要从头开始训练。另一方面,贝叶斯方法,像高斯过程(GPs),可以利用利用先验知识在测试阶段进行快速推理。然而,高斯过程的计算量很大,也很难设计出合适的先验。本篇论文中我们提出了一种神经模型,条件神经过程(CNPs),可以结合这两者的优点。CNPs受灵活的随机过程的启发,比如GPs,但是结构是神经网络,并且通过梯度下降训练。CNPs通过很少的数据训练后就可以进行准确的预测,然后扩展到复杂函数和大数据集。我们证明了这个方法在一些典型的机器学习任务上面的的表现和功能,比如回归,分类和图像补全(Deep neural networks perform well in function approximation, but they need to be trained from scratch. On the other hand, Bayesian methods, such as Gauss Process (GPs), can make use of prior knowledge to conduct rapid reasoning in the testing stage. However, the calculation of Gauss process is very heavy, and it is difficult to design a suitable priori. In this paper, we propose a neural model, conditional neural processes (CNPs), which can combine the advantages of both. CNPs are inspired by flexible stochastic processes, such as GPs, but are structured as neural networks and trained by gradient descent. CNPs can predict accurately with very little data training, and then extend to complex functions and large data sets. We demonstrate the performance and functions of this method on some typical machine learning tasks, such as regression, classification and image completion.)
    2020-06-23 22:20:02下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载