▍1. testIEEE14
说明: 状态估计在IEEE14网络上的加权最小二乘法计算(state estimation for IEEE14 using Weighted Least Squares method)
说明: 状态估计在IEEE14网络上的加权最小二乘法计算(state estimation for IEEE14 using Weighted Least Squares method)
文件包含鸢尾花csv数据集以及鸢尾花项目代码的py文件以及txt文件(The file contains the iris CSV dataset and the PY file and the txt file of the iris project code.)
说明: 粒子群算法与支持向量机的结合,用粒子群算法快速寻找支持向量机的最优参数。(Particle swarm optimization with support vector machines with particle swarm optimization with support vector machines quickly find the optimal parameters.)
使用python语言实现的深信度置信网络(DBN),用于分类(The implement of DBN with python)
说明: 基于深度学习的多标签文本分类 包括ann、cnn、rnn、fasttext、han模型,基于tensoflow(multi label text classfication)
说明: 逻辑回归模型训练分类器并可视化(每一行表示一个样本,每一行有三个数值,其中前两个值代表输入属性x,最后一个值代表标签y)(The classifier is trained and visualized by logistic regression model)
重叠社区发现LFM算法,基于python实现,导入的文件是lfr基准测试网络,里面写了检测指标,文件可更改,算法通过网络邻接矩阵来实现社区划分(The overlapping community found the LFM algorithm, based on the python implementation, the imported document is the LFR benchmark network, in which the detection index is written, the file can be changed, and the algorithm can be divided into the community by the network adjacency matrix.)
基于LSTM-RNN的人类行为预测的代码,基于tensorflow(Human behavior prediction code based on LSTM-RNN(tensorflow))
说明: SVDD用于实现异常点检测,为一种单分类器。(SVDD is a single classifier for outlier detection.)
说明: 基于马尔科夫链的非侵入式负荷分解,可实现仅依据智能电表数据对电器用电曲线的提取。(The non-intrusive load decomposition based on Markov chain can realize the extraction of electrical power consumption curves based on smart meter data only.)
说明: 股票预测涨跌这个是一个神经网络预测股票的程序,总而言之,给力,准,能够很好的拟合规律曲线划分股票数据进行卷积神经网络学习(is a great progamme very beautiful useful good.)
说明: 支持向量机(SVM)——分类预测,多分类问题。(Support vector machine (SVM) - classification prediction, multi classification problem.)
说明: 筛选出发生在TCP层的Dos流量和normal流量 `get_train_data.py` 其中Dos流量的标签`'back.', 'land.', 'neptune.','smurf.', 'teardrop.', 'pod.'` normal流量的标签`'normal.'` 生成文件`dos.kddcup.data.corrected.csv` * 通过统计特征进行数据筛选 `wrap_up.py` * 随机森林对特征重要性进行排序 折交叉验证(Filter out DOS traffic and normal traffic in TCP layer ` get_ train_ data.py ` The labels of DOS traffic are 'back', 'land', 'Neptune', 'Smurf', 'teardrop.'pod.'` Label of normal traffic ''normal.'` Generating files` dos.kddcup.data . corrected.csv ` *Data filtering through statistical features ` wrap_ up.py ` *Random forests rank the importance of features Fold cross validation)
说明: 张明老师matlab的应用案例,编码附在里面,希望可以多多交流(Genetic algorithm code, plus personal understanding, I hope you can communicate more)
说明: 支持向量机 1.理解支持向量机SVM的原理和目标 2.掌握支持向量机的计算过程和算法步骤 3.理解软间隔最大化的含义 4.了解核函数的思想 5.了解SMO算法的过程(Support vector machine 1. Understand the principle and goal of SVM 2. Master the calculation process and algorithm steps of support vector machine 3. Understand the meaning of soft gap maximization 4. Understand the idea of kernel function 5. Understand the process of SMO algorithm)
本文给出使用Python做小波包特征提取的一个实例,并附有MATLAB编写的实现源码。 数据来源:自己采集得到的模拟电路故障响应数据,存在SumData文件夹中,其中文件夹共有9个excel文件,每一个excel文件存的是某种故障状态下采集得到的100组故障响应数据。(In this paper, an example of using Python to extract the features of wavelet packet is given, and the source code written by MATLAB is attached. Data Source: The fault response data of analog circuits collected by ourselves are stored in the SumData folder. There are nine Excel files in the folder. Each excel file contains 100 sets of fault response data collected under some fault condition.)
说明: 本文给出使用Python做小波包特征提取的一个实例,并附有MATLAB编写的实现源码。 数据来源:自己采集得到的模拟电路故障响应数据,存在SumData文件夹中,其中文件夹共有9个excel文件,每一个excel文件存的是某种故障状态下采集得到的100组故障响应数据。(In this paper, an example of using Python to extract the features of wavelet packet is given, and the source code written by MATLAB is attached. Data Source: The fault response data of analog circuits collected by ourselves are stored in the SumData folder. There are nine Excel files in the folder. Each excel file contains 100 sets of fault response data collected under some fault condition.)
基于模拟退火算法对BP神经网络进行的改进,有效提高了精度和迭代速度。(The improvement of BP neural network based on simulated annealing algorithm effectively improves the accuracy and speed of iteration.)
使用深度学习算法ANN对风速数据进行预测,最后的预测效果很好(Using ANN algorithm to predict wind speed)
说明: 使用深度学习算法ANN对风速数据进行预测,最后的预测效果很好(Using ANN algorithm to predict wind speed)