▍1. 05_tensorflow
说明: 使用python实现了分形数学的mandelbrot集合。优化了颜色。(mandelbrot model in fracial mathematics)
说明: 使用python实现了分形数学的mandelbrot集合。优化了颜色。(mandelbrot model in fracial mathematics)
说明: 数据集是MINIST手写数字图像集。MIINST是机器学习领域最有名的数据集之一,被应用于从简单的实验到发表的论文研究等各种场合。该数据集是由0到9的数字图像构成的,训练图像有6万张,测试图像有1万张,这些图像可以用于学习和推理。(The MNIST database of handwritten digits, available from this page, has a training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of a larger set available from NIST. The digits have been size-normalized and centered in a fixed-size image. It is a good database for people who want to try learning techniques and pattern recognition methods on real-world data while spending minimal efforts on preprocessing and formatting.)
说明: 实现DHP(双启发式动态规划)网络,包括执行网络和评价网络,采用BP网络实现。(DHP (double heuristic dynamic programming) network, including execution network and evaluation network, is implemented by BP network.)
说明: 遗传算法工具箱,python包,值得推荐!(ga for python,Genetic algorithm toolkit, python package, recommended!)
说明: 自编码的训练模型,数据太大我将正在之后上传,希望可以帮到需要的朋友(Self coded training model, the data is too large, I will upload it later, hoping to help friends who need it)
说明: 利用深度学习实现图像识别与分类,并用QT编程实现界面设计(Design of image recognition interface based on deep learning + QT)
说明: 各种聚类方法的python代码,包括k_means聚类以及实现过程(Python code for various clustering methods, including k_means clustering and implementation procedures)
说明: 巡风扫描器为开源扫描器,附件为自用开发的相关插件(The patrol scanner is an open-source scanner, and the accessories are related plug-ins developed for self use)
说明: 各种关于cnn的网络结构,resnet senet 等等共10种网络结构(There are 10 kinds of network structures about CNN, such as RESNET senet, etc)
说明: 采用GA、ACO分别对ANFIS和SVM进行优化,预测股市的数据(Using GA and ACO to optimize ANFIS and SVM respectively to predict the data of stock market)
说明: The collection contains only those submissions to VOT2018 for which we were able to obtain explicit permission from the authors (this was indicated by the authors during results submission process).
说明: 在如今这个处处以数据驱动的世界中,机器学习正变得越来越大众化。它已经被广泛地应用于不同领域, 如搜索引擎、机器人、无人驾驶汽车等。本书首先通过实用的案例介绍机器学习的基础知识,然后介绍一 些稍微复杂的机器学习算法,例如支持向量机、极端随机森林、隐马尔可夫模型、条件随机场、深度神经 网络,等等。 本书是为想用机器学习算法开发应用程序的 Python 程序员准备的。它适合 Python 初学者阅读,不过熟 悉 Python 编程方法对体验示例代码大有裨益。(Machine learning in Python)
说明: 数据集扩充后,可以验证bbox在图像中的位置是否正确(After the data set is expanded, it can be verified that the bbox position in the image is correct)
说明: keras 和tensorflow用GAN实现时间序列预测(Time series prediction with GaN by keras and tensorflow)
说明: Tensorflow资料整理,系统的介绍了如何搭建神经网络模型,并讲解手写数字识别的完整实现过程(Tensorflow data processing, the system introduced how to build a neural network model, and explain the handwritten digital recognition of the complete realization process)
说明: 神经网络基础ppt,课件来源于吴恩达老师深度学习课程课件(Ppt of neural network foundation, the courseware comes from the courseware of in-depth learning of teacher Wu enda)
说明: DBsacn算法用于无监督分类,效果挺好的,可以借鉴(The DBsacn algorithm is used for unsupervised classification. The effect is very goo)
说明: sigcomm2019论文合集,供大家参考,还有cvpr合集后续上传,使用模型开发跨平台。网络范围的数据平面编程,SmartNIC上的交互式无服务器计算(sigcomm2019 Paper Collection)
说明: 按照自顶向下和自底向上分析时间序列趋势和转折点(Found the turning point from bottom to the top and from top to the bottom)
说明: 多标签学习算法的相关资料学习,包含数据集和代码(the multi-label knn algorithm ,can use the code in python)