▍1. ICP-point-cloud-registration
三维激光点云配准是点云三维建模的关键问题之一。经典的 ICP 算法对点云初始位置要求较高且配准 效率较低,提出了一种改进的 ICP 点云配准算法。该算法首先利用主成分分析法实现点云的初始配准,获得较好 的点云初始位置,然后在经典 ICP 算法的基础上,采用 k - d tree 结构实现加速搜索,并利用方向向量夹角阈值去除 错误点对,提高算法的效率。实验表明,本算法流程在保证配准精度的前提下,显著提高了配准效率。 (Three-dimensional laser point cloud registration is one of the key three-dimensional point cloud model. High classical ICP algorithm to the initial position of the point cloud registration requirements and low efficiency, proposed an improved ICP point cloud registration algorithm. Firstly, the use of principal component analysis of the initial point cloud registration, get a better initial position of the point cloud, then the basis of classical ICP algorithm using k- d tree structure to achieve speed up the search, and using the direction vector angle the removal of the threshold point error and improve the efficiency of the algorithm. Experiments show that the algorithm processes to ensure the accuracy of registration under the premise, significantly improve the efficiency of registration.)