▍1. AForge.NET-sample
AForge.NET-sample
SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。 该方法于 1999 年由 David Lowe 首先发表于计算机视觉国际会议(International Conference on Computer Vision,ICCV),2004 年再次经 David Lowe 整理完善后发表于 International journal of computer vision(IJCV) 。截止 2014 年 8 月,该论文单篇被引次数达 25000 余次。(来自百度)(SIFT, namely Scale-invariant feature transform (SIFT), is a description used in the field of image processing. This description has scale invariance and can detect key points in images. It is a local feature descriptor. This method was first published by David Lowe at the International Conference on Computer Vision (ICCV) in 1999 and published in the International Journal of Computer Vision (IJCV) in 2004 after it was sorted out and perfected by David Lowe again. As of August 2014, more than 25,000 citations have been cited. (From Baidu))
说明: SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。 该方法于 1999 年由 David Lowe 首先发表于计算机视觉国际会议(International Conference on Computer Vision,ICCV),2004 年再次经 David Lowe 整理完善后发表于 International journal of computer vision(IJCV) 。截止 2014 年 8 月,该论文单篇被引次数达 25000 余次。(来自百度)(SIFT, namely Scale-invariant feature transform (SIFT), is a description used in the field of image processing. This description has scale invariance and can detect key points in images. It is a local feature descriptor. This method was first published by David Lowe at the International Conference on Computer Vision (ICCV) in 1999 and published in the International Journal of Computer Vision (IJCV) in 2004 after it was sorted out and perfected by David Lowe again. As of August 2014, more than 25,000 citations have been cited. (From Baidu))
说明: LBP是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。(LBP is an operator used to describe local texture features of images; it has significant advantages such as rotation invariance and gray invariance.)
基于压缩感知理论的目标跟踪算法,实现对可视目标的稳健跟踪(Target tracking algorithm based on compressed sensing theory)
说明: 基于压缩感知理论的目标跟踪算法,实现对可视目标的稳健跟踪(Target tracking algorithm based on compressed sensing theory)
说明: 使用matlab识别干涉条纹。通过形态学处理,识别干涉条纹数,并计算出条纹间距。内包含交互界面。(The interference fringes are identified by matlab. Through morphological processing, the number of interference fringes is identified and the fringe spacing is calculated. It contains an interactive interface.)
指针仪表自动读数代码和工程halcon11源代码 软件,已经调试直接可以运行。压缩包中包含两张处理图像,便于学习改良。
利用halcon mfc写了一个模板匹配demo,可以基于形状匹配,形状缩放匹配,灰度匹配对图像进行匹配
基于Hog特征 SVM分类器,利用Opencv3.0进行手写数字识别的源代码及所需资源文件(训练图片、测试图片)
功能简单的截图,可以像qq那样截图,并有图片处理功能(Simple screenshots, like QQ screenshots, and image processing capabilities)
说明: 功能简单的截图,可以像qq那样截图,并有图片处理功能(Simple screenshots, like QQ screenshots, and image processing capabilities)
遥感信息工程学院遥感原理与应用课程实习监督分类(Supervised of Remote Sensing Principle and Application Course Practice)
说明: 遥感信息工程学院遥感原理与应用课程实习监督分类(Supervised of Remote Sensing Principle and Application Course Practice)
编程实现灰度图像的几种常用的边缘检测算法,包括:梯度边缘检测算法、Roberts边缘检测算法、Sobel边缘检测算法、拉普拉斯边缘检测算法、canny边缘检测算法、Prewitt边缘检测算法和Krisch边缘检测算法。
很好用的三维重建软件,VisualSFM软件允许上传一系列图像,它从这些图像中找到每一个图像的特定特征,利用这些特征信息重建出3D模型的稀疏点云,而后还可进行稠密点云重建。(The VisualSFM software, a good 3D reconstruction software, allows uploading a series of images. It finds the specific features of each image from these images, and USES these feature information to reconstruct the sparse point cloud of the 3D model, and then it can reconstruct the dense point cloud.)
说明: 很好用的三维重建软件,VisualSFM软件允许上传一系列图像,它从这些图像中找到每一个图像的特定特征,利用这些特征信息重建出3D模型的稀疏点云,而后还可进行稠密点云重建。(The VisualSFM software, a good 3D reconstruction software, allows uploading a series of images. It finds the specific features of each image from these images, and USES these feature information to reconstruct the sparse point cloud of the 3D model, and then it can reconstruct the dense point cloud.)