▍1. 基于BP adabooot强分类器预测,实现优化的功能
说明: 包括分类与预测、聚类分析、关联基本挖掘建模办法,规则、时序模式以及离群点监测(It includes classification and prediction, clustering analysis, association basic mining modeling methods, rules, temporal patterns and outlier monitoring)
说明: 包括分类与预测、聚类分析、关联基本挖掘建模办法,规则、时序模式以及离群点监测(It includes classification and prediction, clustering analysis, association basic mining modeling methods, rules, temporal patterns and outlier monitoring)
说明: Python调用新浪、网易、腾讯的股票Tick数据接口(Python calls stock tick data interface of sina, Netease and Tencent)
lstm做情感分类,中文,用到豆瓣影评,结巴分词,lstm模型,环境python3做编码处理。(lstm for sentiment analyse)
说明: 好学好用的机器学习经典算法实践供下载学习分享.(Good use of machine learning classic algorithm practice for download learning to share)
说明: 好用好学的Python深度学习资料供分享和下载(Easy to use and learn Python in-depth learning materials for sharing and downloading)
说明: 用于模拟大气湍流、哈特曼、变形镜的python程序代码。(Program for simulating atmospheric turbulence, SHACK- Hartmann, deformable mirror codes)
说明: 深度学习目标检测的yolov3,可以直接拿来作为目标检测的模型(Yolov3 for deep learning target detection)
说明: 对csv文件进行读取并按照一定规则进行数据清洗(Read the CSV file and clean the data according to certain rules)
说明: 使用3Dunet进行医学图像分割,讲三维图像进行分割(Medical image segmentation using 3dunet)
说明: 人脑神经网络和计算机神经网络的不同在于,人脑可以解决通用性和跨领域的问题,而计算机神经网络只能解专门的问题,所以哪怕阿尔法狗在围棋界孤独求败战胜了所有男人,但他也不能识别出站在他面前的两个女生谁更漂亮(The difference between human brain neural network and computer neural network is that human brain can solve universal and cross domain problems, while computer neural network can only solve specialized problems. Therefore, even if alpha dog defeats all men alone in go, he can not identify the two girls standing in front of him who is more beautiful)
改程序是一个小插件,改程序可以在abaqus中自动生成二维的颗粒随机分布的板(Can generate random distribution of particles)
说明: 改程序是一个小插件,改程序可以在abaqus中自动生成二维的颗粒随机分布的板(Can generate random distribution of particles)
说明: One-Stage算法不需要Region Proposals阶段,可以直接产生物体的类别概率和位置坐标值,经过单次检测即可直接得到最终的检测结果。(The one stage algorithm does not need the region proposals stage, and can directly generate the category probability and position coordinate value of the object. After a single detection, the final detection result can be obtained directly.)
用python实现的逐步回归算法,希望对大家有用(Step-by-step regression algorithm implemented in python, I hope to be useful to everyone)
说明: 深度学习正在为广泛的行业带来革命性的变化。对于许多应用来说,深度学习通过做出更快和更准确的预测,证明其已经超越人类的预测。本书提供了自上而下和自下而上的方法来展示深度学习对不同领域现实问题的解决方案。这些应用程序包括计算机视觉、自然语言处理、时间序列预测和机器人。(Deep learning is bringing revolutionary changes to a wide range of industries. For many applications, deep learning proves to be beyond human prediction by making faster and more accurate predictions. This book provides top-down and bottom-up approaches to demonstrate deep learning solutions to practical problems in different areas. These applications include computer vision, natural language processing, time series prediction and robotics.)
实现无线网络中能量的智能分配问题,通过dqn算法解决(Realizing the intelligent allocation of energy in wireless networks, solved by dqn algorithm)